مقایسه تراکم عناصر گروه پلاتین در کرومیت‌های افیولیت خوی: نشانه‌ای از حضور نوع کرومیتیت با دو خاستگاه متناوی

فاطمه زعیمی‌نیا، علی کنعانیان ۱، میرصالح میرمحمودی ۲، علی امین‌آبادی پور ۳

۱- دانشکده زمین شناسی، پردیس علوم، دانشگاه تهران
۲- دانشکده مهندسی معدن، پردیس دانشگاه‌های فنی، دانشگاه تهران
۳- گروه مهندسی معدن، دانشکده فنی و مهندسی دانشگاه رامسر

چکیده: مجموعه افیولیت‌های خوی در شمال غرب ایران در ایستگاه‌های متعدد کرومیتیست که از نظر بانکی، زمین‌شیمیایی و کلیه‌های همراه متاناوت هستند. کرومیت‌های کلی کرومیتیتیست که به دو گروه کرومیت‌های غنی از Cr (Cr#) به دو گروه کلی کرومیتیتیست که از نظر تراکم عناصر گروه پلاتین، کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد.

واژه‌های کلیدی: عناصر گروه پلایتین؛ کرومیت‌های افیولیتیتی رامسار؛ افیولیت‌های خوی ایران

مقدمه

مقدمه افیولیتی‌های نظر عناصر پلایتین (PGE) پتاسیم انتقال باعث بهبود درآمد، کرومیت‌های خوی از همین و مواردی افیولیتی‌ها از سه بخش اصلی پیوسته‌ای، بخش گذرا و گوشه‌ای تشکیل می‌شوند. کلیه کروم‌سیلن (کرومیت) به عنوان کلیه اصلی کروم بیشتر در بخش‌های گوشه‌ای و به مقدار کمتر در قرار در کروم‌سیلن‌های لایه‌ای معکوس یافته می‌شوند. برخی از افیولیت‌های خوی را دو نوع کرومیتیتیست که از دو نوع پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد. کرومیت‌های غنی از Cr (Cr#) Al (PGE) و پلایتینین (PGE) (PGE) می‌باشد.

کانینیان@کهایم.عی.ا.ر: ۲۰۲۰۰۲۶۶۴۴۰۹۰۱۷۶۳۲۳، پست الکترونیکی:

kananian@khayam.ut.ac.ir
12 رخخنوم کرومینتی (شکل 2) با صورت عدسی‌های کوچک و بزرگ در این دو بشخ بر پنزيون دارند. کرومینتی‌های موجود در خون غربی توسط هارزویت و دوینیت‌هایی که به طور مشابه با کلیه‌های دگرانش شدیدان، با قطعات کرمینتی‌های بافت‌های نودی، گره‌های و افتودن ناشی می‌دهند دانه‌های کرومیسبینل در کرومینتی‌های خون غربی به صورت خوشه‌ای با شکل هستند و افتادگی ناشی از سرپن‌یکی، از پنیوین (شکل 2) ب در مواردی کلینیکی که به خون در اتلاف کرده، بتلوره‌ها و کرومیسبینل گلب سالم و غیر دگرانش بوده و دارای میان‌برهایی کلیه‌ای سیلیکاتی، سولفیدی و مقدار کمتری کلاه‌های عناصر غربی پلاتینی هستند.

کرومینتی‌های خشخاش‌نوازان در پیوندی‌یهای با شدت سرپن‌یکی شدید قرار دارند. آنها توانایی کمتری نشان می‌دهند و توانایی ناپایداری و در مؤثر نودی در آنها به وجود آمده در ترکیب‌های کرومیسبینل در کرومینتی‌های خشخاش‌نوازان در نور عبوری مناسب با قطعات خوشه‌ای (شکل 2 ب) بکه ترکیب دانه‌های کرومیسبینل در کاره به کرومیسبینل تا به بهترین راهنما سلسله که این خشخاش در نیاز نسبت به روش از بلوک توریتر و سایر مقدار کمتری کلاه‌های عناصر غربی پلاتینی (شکل 2 ب) بیشتر کلمه‌های موجود در این کرومیسبینل‌ها با کلاه‌های تخویضی چون سرپن‌یکی و کلریت جاگزین شده‌اند.

روش‌های بررسی

روش‌های بررسی در این پژوهش، به منظور نورسی میکروسکوپی و شناسایی کلاه‌های غربی پلاتینی از کرومینتی‌ها و سنگ‌های میران بینی از ۳۰۰ مقطع نازک‌سیبی در کیفیت بالا در دانشگاه تبریز، دانشگاه تبریز و دانشگاه علوم میکروسکوپی پایتخت، مجموعه این تیم‌ها و میکروسکوپی کرومیسبینل‌ها و شناسایی میان‌برهای مشکوک به کلاه‌های کرومینتی‌های غربی پلاتینی توسط میکروسکوپی پناسی بزرگ‌اندازی ۲۰۰ برابر انجام شد. پس از شناسایی کلاه‌های احتمالی کرومینتی‌های غربی کرومیسبینل در دانشگاه تبریز، انجام فرآیند تجزیه نازک‌سیبی از کرومینتی‌های غربی جهت جمع‌آوری فرآیند تجزیه نازک‌سیبی از کرومینتی‌های غربی جهت جمع‌آوری فرآیند تجزیه نازک‌سیبی از کرومینتی‌های غربی جهت جمع‌آوری
شکل 1 نتایج شناسایی ساده‌ای از منطقه مورد بررسی به همراه محل تقریبی نمونه‌داری کرومینیت‌ها در خاک غربی افیولیت و یاخت

شروع افیولیت خوی به همراه نتیجه‌ی زمین‌ساختی خاورمیانه - قفقاز برجگنده از مرجع [131].
نتایج
شیمی کروم اسپنل
بر اساس عدد کروم (Cr) کروم اسپنل در کروم‌میت‌های موجود در بخش غربی افیلیت خوی از نوع wt > Al₂O₃ و Crₕ=۰ تا ۲۳ هستند (جدول ۱). کروم اسپنل‌های موجود در بیرون‌زمینی کروم‌میت‌های غربی خوی نیز دارای Cr# بیش از ۰.۵ و Crₕ=۰ هستند (شکل ۳). بر اساس عدد کروم و مسیر آلومینیوم، کروم اسپنل‌های موجود در کروم‌میت‌ها و بیرون‌زمینی کروم‌میت‌های خوی از نوع Al₂O₃ و Crₕ=۰ و ۰.۴۵ تا ۰.۷۰ هستند و ۰.۴۵ تا ۰.۷۰ H₂O بین ۴۰ تا ۴۰ مشخص می‌شوند (جدول ۱).

کروم اسپنل‌های افیلیت‌های بخش خرمشیری و میتوانید مقادیر کمتری از Cr# و البه مقادیری از Crₕ=۰ تا ۲۳ می‌شوند (شکل ۳).

کروم اسپنل‌های موجود در افیلیت‌های خوی بین ۴۰ و ۰.۷۰ H₂O در کروم اسپنل‌های موجود در کروم‌میت‌های غربی خوی کروم اسپنل‌های بخش خرمشیری کروم‌میت‌های خوی از نوع Al₂O₃ و Crₕ=۰ و ۰.۴۵ تا ۰.۷۰ H₂O بین ۴۰ تا ۴۰ مشخص می‌شوند (جدول ۱).
وپیامدهای میکروسکوپی مشکوک به کاتیهای گروه بلاتین هستند، زیرا اگرچه از نظر درخشش و رنگ مشابهی به اعداد میانی‌هایی درون کروم اسپینال‌ها هستند.

جدول 1: هندسه‌ای از نتایج تجزیه‌ریزی کروم اسپینال‌های موجود در کرومینیت‌ها و پریدوتین‌های مریزان در افیولیت خوی

<table>
<thead>
<tr>
<th>افیولیت غیری</th>
<th>افیولیت شریفی</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع سکه</td>
<td>پریدوتین سیران</td>
</tr>
<tr>
<td>سیس</td>
<td>H11</td>
</tr>
<tr>
<td>SiO2</td>
<td>bdl</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.2</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.2</td>
</tr>
<tr>
<td>FeO*</td>
<td>0.2</td>
</tr>
<tr>
<td>MnO</td>
<td>0.2</td>
</tr>
<tr>
<td>MgO</td>
<td>0.2</td>
</tr>
<tr>
<td>CaO</td>
<td>0.2</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.2</td>
</tr>
<tr>
<td>K2O</td>
<td>0.2</td>
</tr>
<tr>
<td>NiO</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Bdl = زیر حد شناسایی

شکل 4. تصادف میکروسکوپی کاتی های احتمالي گروه پلاطین که در بررسی‌های سنتگنگاری مشخص شده‌اند. (الف) کاتی شکل‌های احتمالی گروه پلاطین در کروماسپینل (Cr) با طرح‌هایی از شکل آن. (ب) نمونه شناسایی شده در محل کروماتیک کاتی کروماسپینل (ب) کاتی گه دام‌افتدار در زمینه سیلیکانی‌سپراتینی (Ser). (پ) نمونه احتمالی گروه پلاطین به همراه دو فاز سیلیکانی (تیره رنگ در تصویر پایین).
شیمی عناصر گلولاین در سنگ
به دلیل محدودیت در انجام تجزیه سنگ کل در این پژوهش، یک ایزو تری دقت میکروسکوپی و شناسایی نمونه‌های کرومینیتی؛ تعداد ۶ نمونه از کرومینیت‌های خوی و سیمک‌های پرپتوفتیز بررسی می‌گردد. آنها جهت تعبیه فیروالی و PGE از نمونه سنگ انتخاب و تجزیه شده که نتایج آنها در جدول ۳ ارائه شده است. عبارت انتخاب نمونه‌ها در خش غربی افیولیت خوی بیشترین تعداد میکروپاره‌های کاتیونی گلولاین و در بخش شرقی بافت پدیده‌بندی فاوانی PGE در همه نمونه‌ها اندک و در مواردی بخش غربی شناسایی ایست. با این حال، به طور کلی کرومینیت‌های غنی از Cr در بخش غربی افیولیت خوی به PGE نسبت مثبت با Pd/Ir از کرومینیت‌های غنی از Al در بخش شرقی افیولیت شده که مشخص است که نسبت Pd/Ir با IPGE (جدول ۳) و در هر دو گروه، غنی‌شدنی از عنصر گلولاین Pd/Ir به بیشتر از گروه IPGE این عنصر حاصل می‌باشد. در جدول ۳ فراوانی عناصر گلولاین در سنگ کل کرومینیت‌ها و پرپتوفتیز خوی.

جدول ۴

<table>
<thead>
<tr>
<th>نوع کرومینیت</th>
<th>نام بسته (ppb)</th>
<th>Au</th>
<th>Os</th>
<th>Ir</th>
<th>Ru</th>
<th>Rh</th>
<th>Pd</th>
<th>Pd/Ir</th>
<th>IPGE*</th>
<th>PGE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرومینیت‌های غنی از Cr</td>
<td>B-LD-9</td>
<td>۳۰</td>
<td>۲۷</td>
<td>۱۸</td>
<td>۷</td>
<td>۴</td>
<td>b.d.l.</td>
<td>۹</td>
<td>۱۲۸</td>
<td>۱۱۹</td>
</tr>
<tr>
<td></td>
<td>C-B-1</td>
<td>۱۸</td>
<td>۸</td>
<td>۶</td>
<td>b.d.l.</td>
<td>۹</td>
<td>۱۴</td>
<td>۱۳۳</td>
<td>۱۱۹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C-AN</td>
<td>۱۱</td>
<td>۷</td>
<td>b.d.l.</td>
<td>۱۰</td>
<td>۹۵</td>
<td>۸</td>
<td>۹</td>
<td>۱۲۸</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-H-2</td>
<td>۱۱</td>
<td>۱۰</td>
<td>b.d.l.</td>
<td>۹</td>
<td>۸۳</td>
<td>۷</td>
<td>۹</td>
<td>۱۲۸</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EQ-UP</td>
<td>۸</td>
<td>۷</td>
<td>b.d.l.</td>
<td>۷</td>
<td>۹۳</td>
<td>۶</td>
<td>۷</td>
<td>۱۰۰</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q-A1</td>
<td>۲۲</td>
<td>۱۰</td>
<td>b.d.l.</td>
<td>۷</td>
<td>۷۴</td>
<td>۶</td>
<td>۷</td>
<td>۸۳</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q-H ۲</td>
<td>۲</td>
<td>b.d.l.</td>
<td>۷</td>
<td>۷</td>
<td>۷</td>
<td>۷</td>
<td>۸</td>
<td>۷</td>
<td>۸۳</td>
</tr>
</tbody>
</table>

جدول ۵

<table>
<thead>
<tr>
<th>نوع کرومینیت</th>
<th>نام بسته (ppb)</th>
<th>Au</th>
<th>Os</th>
<th>Ir</th>
<th>Ru</th>
<th>Rh</th>
<th>Pd</th>
<th>Pd/Ir</th>
<th>IPGE*</th>
<th>PGE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرومینیت‌های غنی از Al</td>
<td>EQ-UP</td>
<td>۸</td>
<td>۷</td>
<td>b.d.l.</td>
<td>۷</td>
<td>۷۴</td>
<td>۶</td>
<td>۷</td>
<td>۸۳</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q-A1</td>
<td>۵</td>
<td>b.d.l.</td>
<td>۷</td>
<td>۷</td>
<td>۷</td>
<td>۷</td>
<td>۷</td>
<td>۸</td>
<td>۷</td>
</tr>
<tr>
<td></td>
<td>Q-H ۲</td>
<td>۷</td>
<td>b.d.l.</td>
<td>۷</td>
<td>۷</td>
<td>۷</td>
<td>۷</td>
<td>۷</td>
<td>۸</td>
<td>۷</td>
</tr>
</tbody>
</table>
طیف‌های رaman

میتی‌الیا طیف‌سنجی رامان به عنوان یک ابزار غیرمخرب در شناسایی کانی‌ها استفاده از ارزش دقت 1 میکرومتر است که امکان شناسایی کانی‌ها و مواد معنی‌دار انداردهای میکرومتری را که شناسایی دقیق آنها به روش‌های دیگر تجزیه از جمله ریز‌بیانی دشوار و با خطای قراره‌ای است، فراهم می‌آورد. علاوه بر دقت، طیف‌سنجی رامان یک روش سریع و آسان در شناسایی کانی‌ها هست که به نگه‌گیری آمد و سازی خاصی احتمال داشته و امکان تشخیص کانی‌های در انداردهای میکرومتری در مقاومت نارنجی‌سیاهی با صفت عمومی آن را فراهم می‌کند.

طیف‌های رامان بر اساس بیوندهای بین عناصر و حضور

شکل 6. افزایش های رامان برای لاروریت با Rh و Pd/Ir گرفته شد. (جدول 3) ککه به صورت میانیار در کروم استکلیه‌های غنی از Cr و دیگر منابع می‌تواند خوراکی بیشتری از میانیار در کروم استکلیه‌های غنی از Cr در NaCl به صورت میانیار در کروم استکلیه‌های غنی از Cr و دیگر منابع می‌تواند خوراکی بیشتری از میانیار در کروم استکلیه‌های غنی از Cr در NaCl به صورت میانیار در کروم استکلیه‌های غنی از Cr و دیگر منابع می‌تواند خوراکی بیشتری از میانیار در کروم استکلیه‌های غنی از Cr در NaCl به صورت میانیار در کروم استکلیه‌های غنی از Cr و دیگر منابع می‌تواند خوراکی بیشتری از میانیار در کروم استکلیه‌های غنی از Cr در NaCl به صورت میانیار در کروم استکلیه‌های غنی از Cr و دیگر منابع می‌تواند خوراکی بیشتری از میانیار در کروم استکلیه‌های غنی از Cr در NaCl به صورت میانیار در کروم استکلیه‌های غنی از Cr و دیگر منابع می‌تواند خوراکی بیشتری از میانیار در کروم استکلیه‌های غنی از Cr در NaCl به صورت میانیار در کروم استکلیه‌های غنی از Cr و دیگر منابع می‌تواند خوراکی بیشتری از میانیار در کروم استکلیه‌های غنی از Cr در NaCl به صورت میانیار در کروم استکلیه‌های غنی از Cr و دیگر منابع می‌تواند خوراکی بیشتری از میانیار در کروم استکلیه‌های غنی از Cr در NaCl به صورت میانیار در کروم استکلیه‌های غنی از Cr و دیگر منابع می‌تواند خوراکی بیشتری از میانیار در کروم استکلیه‌های غنی از Cr در NaCl به صورت میانیار در کروم استکلیه‌های غنی از Cr و دیگر منابع می‌تواند خوراکی بیشتری از میانیار در کروم استکلیه‌های غنی از Cr در NaCl به صورت میانیار در کروم استکلیه‌های غنی از Cr و دیگر منابع می‌تواند خوراکی بیشتری از میانیار در کروم استکلیه‌های غنی از Cr در NaCl به صورت میانیار در کروم استکلیه‌های غنی اз
پیده ذوب‌بخشی فرانی در فنر فشرده‌شده در تمرکز عناصر Cr، Pd و Cu را ایجاد می‌کند [5]. بنابراین، کرومینیتهای برآمدگی این نیز غنی از Cr و Pd است [12]. 

اما در مواردی که بخش ذوب‌بخشی (کمتر از 20%) می‌شود، کرومینیتهای مزج از PGE و Cr را ایجاد می‌کند [31].

کرومینیتهای غنی از Cr در بخش غیر-افیلیته خوی Cr (23-3 ppb) بسیار بالاتر از Al غنی شده‌است. در این مطالعه، در ترکیبی از PGE و Cr و Cu می‌تواند بر طور کلی زمان متأخر کروم‌سپینل اتم‌تاییدن از PGE و Cu باعث صرفه‌بری مشابه‌شده و در کروم‌سپینل مشابه‌شده در ترکیب آیسیال (شکل 3) را نشان می‌دهد.

در رابطه با اکانت کرومینیتهای اقیانوسی، تبلور کروم‌سپینل می‌تواند بر جدایی طولانی‌مدت از PGE باعث ایجاد PGE و Cu باعث می‌شود. توالی مسیر نشان می‌دهد بنابراین اندازه‌گیری Cu نسبت به Pd در جراثیمی‌های مزج در گسترده‌ترین PGE و Cu باعث تحول می‌شود و نشان می‌دهد که کروم‌سپینل را نشان می‌دهد [5]. 

در این حالت، حضور کروم‌سپینل شرایط مناسب برای هسته‌بندی PGM شده با کندشه شیب منفی نشان می‌دهد (شکل 5) که هر دوی این شواهد از مشخص‌سازی ویژه کرومینیتهای اقیانوسی در مناطق فشرده‌شده [33] به ماهیت غنی و Cr غنی شده‌اند در Cr غنی شده و در آزمایش‌ها، افزایش PGE (پیش‌بینی) می‌تواند بهره از ترکیب PGE و Cu باعث می‌شود. بخش غیر-افیلیته خوی Cr در بخش غیر-افیلیته خوی Cr با افزایش PGE مرغوب در کروم‌سپینل [24] و PGE و Cu باعث می‌شود. بخش غیر-افیلیته خوی Cr و PGE و Cu باعث می‌شود. بخش غیر-افیلیته خوی Cr و PGE و Cu باعث هم‌بوده و کروم‌سپینل را نشان می‌دهد.

در میان Cr غنی و PGE غنی، کروم‌سپینل را نشان می‌دهد [5]. بنابراین اندازه‌گیری Cu نسبت به Pd در کروم‌سپینل غنی از Cr (کمتر از 20%) و Cu باعث می‌شود. یک نتیجه گرفته که این گروه از
بردشت
مجموعه افیولیتی‌های غنی واقع در استان آذربایجان غربی، به دو بخش غربی افیولیتی در نزدیکی مرز ترکیه و بخش شرقی افیولیتی در شمال شرقی استان اردبیل تقسیم می‌شود. بر اساس مقدار Cr، نوع مختلفی از کوبندره‌های کرومیتی‌های Cr-rich (با Cr > 5 کمتر) از کرومیتی‌های غنی Cr (با Cr < 2 کمتر) در افیولیت‌های غربی و شرقی استان اردبیل نمایان می‌شود. در این مقاله، افیولیتی‌های خاویاری‌های شرقی استان اردبیل در نظر گرفته شدند. مکانیزم ایجاد و بنیان‌گذاری کرومین‌های ناشتا در این ضرک‌ها مورد بررسی و تحلیل قرار گرفت.

نیز گزارش شده است.

تقدیمات
نگارندازی از پرشور شوای آوری، دانشگاه کانزایا، زاین، به دلیل فراهم‌آوردن امکانات برپایه‌دارشک و طبیعی‌سنج رامان و بی‌هدفی ارزشمند در ارتفاع این پژوهش‌صیحیمانه سیاستگرایی می‌کند.

مراجع


Earth and Planetary Sciences (CORALS II), Madrid (Spain), May 18–20, (2011) 82.


[34] Allahyari K., Saccani E., Pourmoafi M., Beccaluva L., Masoudi F., “Petrology of mantle peridotites and intrusive mafic rocks from the Kermanshah ophiolitic complex (Zagros belt, Iran): implications for the geodynamic evolution of the Neo-Tethyan oceanic branch between Arabia and Iran” Ofioliti 35 (2010) 71–90.