بررسی شیمی کانی‌ها و سنگ‌زایی گدازه‌های داسیتی مخروط آتش‌نشانی آروانه در جنوب غرب شهرستان بستان آباد-شرق آتش‌نشانی سهند

رباب حاجی على اوغلی، مریم رشیدی، محسن مسیب

گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز
(دریافت مقاله: 1384/03/01، نهایی: 1386/03/20)

چکیده: مخروط آتش‌نشانی آروانه وابسته به بخش شریفی مجموعه آتش‌نشانی سهند در جنوب غرب شهرستان بستان آباد قرار گرفته است. این مخروط با ترکیب گذرازه‌های داسیتی-نادیده داسیتی و روداسیتی ارتباط با فعالیت‌های آتش‌نشانی جوان سهند به سبب پیچیدنی-پلیسوس-پلیسوس تشکیل شده است. بر اساس مطالعات پتروگرافی، کامی این فنکریست شامل پلاژیوکالاز + هورنلمن + بیتونیت + کوارتز + فلدسپار پتاسیم است. ترکیب پلاژیوکالازها گلبی از FeO/FeO+MgO و FeO/FeO+MgO سیاست مورد بررسی با میزان می‌باشد. بین ۵/۶۰ درصد شرایط گردشگی به‌دست آمده است. ترکیب شیمی فنکریست‌های امپیوس از نظر کلسیک است. حضور آمفی‌پیله‌ها های کلسیک در سنگ‌های مالگامی‌های شیمیایی وابسته به سنگ‌های مالگامی‌های ناشناخته است. حجم‌گذاری در فنکریست‌های امپیوس از نظر زیستی آن در جنوب غرب آقص است. شرایط کمبودی و نازک‌ساخته‌های فنکریست‌ها با اینکه شرایط کمبودی و نازک‌ساخته‌های فنکریست‌ها با استفاده از روش‌های متفاوت بیش از حدود ۷۰۰ تن در ۷۰۰ دارچی زمان هر گرد در گستره ۳ تا ۶ کیلومتر تا یک دارچی زمان است. بر اساس فشار محاسبه شده احتمالاً می‌توان شروع تولید فنکریست‌ها را از ۱۸ کیلومتری پیسته قارای منطقه در نظر گرفت.

واژه‌های کلیدی: داسیتی، شیمی‌کمی، حفرات-شکار سنگی، مخروط آروانه، آتش‌نشانی سهند

مقدمه

منطقه مورد بررسی با مشخصات جغرافیایی ۲۴ درجه و ۳۰ دقیقه شرقی و ۴۹ درجه و ۳۷ دقیقه شمالی جنوب غرب شهرستان بستان آباد قرار گرفته است. این منطقه در تقسیم‌بندی ایالت‌های زمین‌ساختی ایران در منطقه‌های مختلف نزدیک به‌بین‌رودی‌آزداوری-نادران-بی‌شمارین و ایالاتی‌آزداوری-دخترا (۱۲) واقع شده است (شکل ۱-الف). مطالعات آتش‌نشانی در منطقه‌های ارومیه و کلاردشت به‌طور مداوم احتمالاً از انسان‌ها پیشانی را یکپارچه‌گی ساخته است. مخروط آتش‌نشانی آروانه در منطقه مورد بررسی با ترکیب vùng‌های حذف‌رسان در منطقه سیلیستوس-پلیسوس-پلیسوس (۴) به‌خاطر مخلوطی

hajialioghli@tabrizu.ac.ir
از قوران آتش‌نشانی سهند (فاز جوان سهند) و استنی است.

زمین‌شناسی صحرایی
بر اساس سال سنگ‌های سهند (۶) سن آتش‌نشانی
سهند میوس-کواتری است. مخروط آتش‌نشانی آروانه کوه
مشابه با دیگر گزاره‌های سهند به دلیل غلظت بالای میکا به
صورت مخروط نسبتاً کامل مشاهده می‌شود که با نفوذ خود,

شکل ۱ (الف) موقعیت منطقه ی مورد بررسی در رشته‌کوه ایران [۱]، (ب) نقشه زمین‌شناسی مخروط آروانه کوه و رخسارهای آتش‌نشانی در جنوب غرب
بستان‌آباد در شرق آتش‌نشانی سهند [۴] .

شکل ۲ (الف) نمایی از مخروط آروانه کوه به سبب یلی‌سنجش، (ب) نمایی از نمایشگاه واپشته به یلی‌سنجش که مخروط
آروانه از آن پیروین آمده است، (ب) قطعات و بلکه‌های سنگی سرخ نزدیک به هدها مخروط، (ت) لایه‌های نسبتاً نرم و روشن در گذشته آرون،
(ت) لایه‌های نسبتاً نرم و روشن در گذشته آرون، (ج) پوستی‌های سرخ در داخل گدازه‌های
سرخ‌رگ که احتمالاً در ارتباط با قطعات جدا شده از حاشیه سردر شده گدازه در داخل آن می‌باشد.
بررسی‌های کانی شناسی و روابط بافتی کاناتئر از ریشه کوه

بررسی‌های گسترده‌ای انجام شده است تا در بافت‌های سیستم‌های موجود در این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. این کاربرد برای بهبود درک انواع مختلف از ریشه‌ها و شیمی‌های موجود در این منطقه استفاده شده است. [2] ترکیب

این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان داده است که بررسی‌های این منطقه به بررسی‌های مایوریسپوری به شکل‌های مختلف و روابط بافتی آنها انجام گردد. ترکیب این گزارش‌ها نشان D2-شده‌اند.
میکروپلیمی ریزدانه در برخی از سنگها مشاهده شد (شکل ۳ تجربه‌های ۱۱). شیمی‌کاتیونی پلاژیوکلاز: کانی‌های فنوزیست پلاژیوکلاز در گذشته‌های داسیت مخلوط انشافشانی آرآن به صورت نقطه‌ای مورد بررسی نقطه‌ای قرار گرفتند. کانی‌های اسیدی شده درای متقادی متفاوت از آسید سیلیس (شکل ۱ یا ۲۷) در اکسید آلومینیم از ۲۱۰ تا ۴۱۱ درصد، اکسید کلسیم از ۸۲ تا ۴۶ درصد و اکسید سیلیس از ۱۸ تا ۸۶ درصد هستند (جدول ۱). مقدار پلاژیوکلاز در سنگها بسیار گذشته و در حدود ۵۷ تا ۵۸ درصد است. فرمول ساختار پلاژیوکلاز بر اساس ۵ کاتیون و ۸ اکسیزن معادله را (جدول ۱) بست که در تغییر است. ترکیب شیمی‌پلاژیوکلاز در مقدار سه نمای (شکل ۱۲) در گستره‌ای انرژی و اکسایدی قرینسی‌های قدرت (شکل ۴-۷) درصد آن‌ها در پلاژیوکلاز بیشتر از مرکز آن است (منطقه بندی وارون) (جدول ۱).

فشار از دست برود آمیفیل همکاری دیگر کانی‌های اسید به صورت طولانی پایدار نمی‌ماند و حاشیه‌های واکنشی در پی ایجاد می‌شود. در برخی نمونه‌ها حاشیه‌های ضخیم‌تر بوده و گاهی بطور کلی کانی آب‌رسی شده و به وسيله کاتیون‌های اسیدی جابجایی شده‌اند (شکل ۳ تجربه‌های ۱۱). هاله‌ها و واکنشی ضخیم در آمیفیل را احتمالاً بیان به عواملی موجب طولانی بودن زمان کریستال‌سازی طی سعود می‌گردد. کاهش محدودیت پایداری و واکنش آنها با گذشت نسبت داد.

[۱۰] کوارتز و نتایج فلسفی: فنوزیست کوارتز و فلسفی پناسیم در سنگ‌ها کم و بی در برخی حضور ندارند. کوارتز اغلب به صورت فنوزیست با حاشیه‌های خلیجی و به شدت خورد سه شدیده می‌شود. نتایج آزمایش کوارتز و فلسفی پناسیم همراه با بافت خلیجی کوارتز در سنگ‌های منسوب به سرپیچی احتمالاً می‌توان به نمایداری این کانی‌ها در شرایط انتقال فشار نسبت داد.

بافت اصلی این سنگ‌ها هیالومورفیت و میکروپلیمی پورفزیری است. بافت جریانی در سمت‌های شیشه‌ای و گاه...
جدول 1 ترکیب شیمیایی پلازبوکلوز در سنگهای داخلی آرواره کوه باجه رودخانه سچالایی آبشار زنگنه شرقی

<table>
<thead>
<tr>
<th></th>
<th>Pl-rim</th>
<th>Pl-mid</th>
<th>Pl-core</th>
<th>Pl-rim</th>
<th>Pl-mid</th>
<th>Pl-core</th>
<th>Pl-rim</th>
<th>Pl-mid</th>
<th>Pl-core</th>
<th>Pl-rim</th>
<th>Pl-mid</th>
<th>Pl-core</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>58.61</td>
<td>59.75</td>
<td>60.70</td>
<td>59.53</td>
<td>60.15</td>
<td>61.44</td>
<td>58.58</td>
<td>60.58</td>
<td>61.32</td>
<td>58.58</td>
<td>60.58</td>
<td>61.32</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.41</td>
<td>0.27</td>
<td>0.36</td>
<td>0.34</td>
<td>0.29</td>
<td>0.26</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>24.62</td>
<td>24.99</td>
<td>25.73</td>
<td>25.70</td>
<td>25.78</td>
<td>24.91</td>
<td>24.45</td>
<td>24.54</td>
<td>24.54</td>
<td>24.45</td>
<td>24.54</td>
<td>24.54</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.67</td>
</tr>
<tr>
<td>FeO</td>
<td>0.12</td>
</tr>
<tr>
<td>MgO</td>
<td>0.24</td>
</tr>
<tr>
<td>CaO</td>
<td>0.50</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.45</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.45</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.45</td>
</tr>
</tbody>
</table>

ان حالی می‌تواند نشان دهنده عدم برقراری تغییر در بین بلور با ماکم‌ها در اثر تغییر فشار و حجم ترکیب پلازبوکلوز را حاکم در ترکیب حاکمیت می‌گردد. مقادیر Ca در ترکیب حاکمیت پلازبوکلوز به روشی از پلازبوکلوز احتمالاً با فرآیندهای شیء بحث نماید. در طی سرت خود سنگ‌های کوه‌نشین در برخی نمونه‌های پلازبوکلوز به صورت انکلویدون در داخل کانی‌های حضور دارد. ترکیب شیمیایی پلازبوکلوز در انکلویدون‌ها تغییر وابسته است.

جدول 2 ترکیب شیمی آمفیبول و بیوئیت در سه‌گروه داسیت متروک شبکه های کو.

<table>
<thead>
<tr>
<th></th>
<th>SiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amp-Il</td>
<td>44.81</td>
<td>44.18</td>
<td>44.74</td>
<td>44.24</td>
<td>44.17</td>
<td>44.13</td>
<td>44.14</td>
</tr>
<tr>
<td>Amp-Md</td>
<td>44.81</td>
<td>44.18</td>
<td>44.74</td>
<td>44.24</td>
<td>44.17</td>
<td>44.13</td>
<td>44.14</td>
</tr>
<tr>
<td>Amp-Ml</td>
<td>44.81</td>
<td>44.18</td>
<td>44.74</td>
<td>44.24</td>
<td>44.17</td>
<td>44.13</td>
<td>44.14</td>
</tr>
<tr>
<td>Total</td>
<td>44.81</td>
<td>44.18</td>
<td>44.74</td>
<td>44.24</td>
<td>44.17</td>
<td>44.13</td>
<td>44.14</td>
</tr>
</tbody>
</table>

Formula: (O)2(OH)3 Si, Ti, Al, Fe3+, Mn, Mg, Ca, K, Na, Total, AlIV, AlIII
نمونه دو نتایی
بونیت در سنگ‌های مور بررسی تأثیر می‌کند (شکل 4).
Given: بونیت از آهن (Fe) منیزیوم سنگی به گریزنتگی اکسیژن قطع شده و در نتیجه مگنتیت در سنگ‌های موری شده، در صورتی که این تابلو در شرایط احیا و گریزنتگی پایه اکسیژن صورت گیرد، بونیت از آهن تشکیل شده و مگنتیک کمیاب خواهد بود (شکل 12). بونیت های MgO مور بررسی می‌شود (شکل 6).

مراجع:
1. آمیزیل: آمیزیل قار و اکسیژن در سنگ‌های داسیت منطقه مور بررسی را تشکیل می‌دهد.
2. منظر بررسی خاک اصلی تا، درصد کربندهای مور مرده بررسی می‌شود.
3. آمیزیل قار و اکسیژن در سنگ‌های داسیت منطقه مور بررسی را تشکیل می‌دهد.
4. منظر بررسی خاک اصلی تا، درصد کربندهای مور مرده بررسی می‌شود.
5. آمیزیل قار و اکسیژن در سنگ‌های داسیت منطقه مور بررسی را تشکیل می‌دهد.
6. منظر بررسی خاک اصلی تا، درصد کربندهای مور مرده بررسی می‌شود.
7. آمیزیل قار و اکسیژن در سنگ‌های داسیت منطقه مور بررسی را تشکیل می‌دهد.
8. منظر بررسی خاک اصلی تا، درصد کربندهای مور مرده بررسی می‌شود.
9. آمیزیل قار و اکسیژن در سنگ‌های داسیت منطقه مور بررسی را تشکیل می‌دهد.
10. منظر بررسی خاک اصلی تا، درصد کربندهای مور مرده بررسی می‌شود.

بررسی شیمی‌کاتیو و سنگ‌رسانی گازه‌های داسیت مخروط...
فرمول ساختاری امفیپول با نتایج نمودارهای قیلی همخوانی
نشان می‌دهد (شکل ت).

تعیین سری ماکمایی و محيط زمین ساخته
امفیپول از ساندی‌گان عادی سنگ‌های آدرین به‌ویژه سری
اهکی-قلبی به‌شمار می‌آید (12) برای تعیین محيط‌های
تکنوژن‌گامایی مختلف به‌خصوص تشخیص محيط‌های

فرورانش و درون صفحاه از ترکیب شیمی امفیپول استفاده
می‌شود (22). امفیپول‌های واپسیده به فورورانش دراز مقدار
پاپرن تر TiO_2 و Na_2O نسبت به انواع درون صفحاه است. بر
اساس نمودار ردیوئنی تکنوژن‌گامایی (23) امفیپول در
سنگ‌های مورد بررسی در سطح‌های گرانسی واپسیده به
فورورانش قرار می‌گیرند (شکل V-الف).

شکل ۵ (الف) نمودار جدای کننده امفیپول‌های ماکمایی و دگرگون (22) (ب) ترکیب امفیپول‌های مورد بررسی روي نمودار
در برایر (Na)_8 تکریک غنی از بالسین آن را نشان می‌دهد. (ب) نمودار تعیین اکسیدیت پایه ترکیب امفیپول (23) که بالا
بودن نسبی گریزندگی اکسیژن در زمان تیلور امفیپول‌های مورد بررسی را نشان می‌دهد.

شکل ۶ رده بندی شیمیایی امفیپول‌ها (25) (الف) ترکیب امفیپول‌های مورد بررسی بر اساس مقادیر کاتیونی
Al_8 Ti از نوع منیزیو- هوئین‌لند و چرمایکت تعیین می‌شود. (ب) در نمودار Na_2K_2Mg_2Fe_2+ Si در مقابل
ترکیب امفیپول‌های مورد بررسی در گستره چرمایکت، هوئین‌لند و
ایدین واقعی می‌شوند. (ب) در نمودار Mg/Mg_2Fe_2+ Si در برایر
ترکیب کاتیون‌های امفیپول‌ها اکسیدیتیت هوئین‌لند، هوئین‌لند و
چرمایکت هوئین‌لند است که در نمودار Al2O3 در جاگاه جهان‌گری (T) در مقابل مجموع کاتیونی در جاگاه A
امفیپول با ترکیب منیزیو- هوئین‌لند،
اکسیدیتیت هوئین‌لند و چرمایکت هوئین‌لند هم‌خوانی نشان می‌دهد.
بر اساس بررسی‌های [34,33,32] مقدار Al^{IV} در ترکیب شیمی‌آمیفیبول به عنوان مزرع چندایش محیط‌های تکتونومگماتیک آمیفیبول یا در نظر گرفته می‌شود. مقادیر Al^{IV} واکنش به تشکیل آمیفیبول در محیط‌های زمین ساختی گزارش‌های در فشارهای بالاتر از 10 کیلوبار بوده و مقادیر Al^{IV} شناسی جزای قوسی در فشارهای کمتر از 5 کیلوبار است. بر این اساس، با توجه به مقادیر Al^{IV} در آمیفیبول‌های مورد بررسی [30, 32]، جدول 3، بیشتر آمیفیبول‌ها (به استثنای یک نقطه با در Bib 2) به فعالیت مصرف‌های واکنش به فروراش‌های محیطشان و در ترکیب آمیفیبول و بیوتیت در ماگما هک در بالا اشاره نشده است. پس از این شواهد هستند که نتایج به دست آمده وابستگی به فروراش‌های آمیفیبول-قلیایی از نمودارهای زنوزیمی‌ای (سری های آمیفیبول منطقه‌های فروراش) را تایید می‌کند. این نتایج با توجه حاصل از تحقیقات زمین‌ساختی با استفاده از ترکیب عناصر اصلی بیوتیت‌های موجود در هضمن سنگ‌های (شکل 6 و 7) و نیز نتایج زنوزیمی سنگ‌کل به دست آمد از بررسی‌های [7] همخوانی دارد.

شکل 7 (الف) نمودار رده‌بندی تکتونومگماتیک آمیفیبول [32] در سنگ‌های اندرتیت دایسی (روانه کوه، ب) ترکیب سری ماگمایی سنگ‌های مورد بررسی بر اساس ترکیب شیمی بیوتیت [32] (ب) ترکیب میکالهای مورد بررسی روی نمودار تکتونومگماتیک [15] MgO-FeO* Al2O3-MgO نمودار [15] (ت) نمودار Al_2O_3-FeO* Al_2O_3-MgO [15] (ت) نمودار Al_2O_3-FeO* Al_2O_3-MgO [15] (ت) نمودار Al_2O_3-FeO* Al_2O_3-MgO [15] (ت) نمودار Al_2O_3-FeO*
زمین دما-فشار سنگی

سنگ‌های آتش‌نشان مورد بررسی با فتوکپسی‌های درشت بلوه، می‌توانند با توجه به میزان تراژدی محاسباتی در بلوه، فتوکپسی‌های درشت بلوه می‌تواند در تراژدی محاسباتی نه تنها به فشار بلکه تا حدی ثابت و استحکام‌هایهای این بلوه‌ها را در بر بگیرد.

همانطور که می‌دانیم، فشار بلوه‌ها به مقدار P = 6.014 Kbar = 0.314 ± 0.467 Al²[0.5] - [(T(°C) - 675) / 85]* [0.53 Al²[0.5] - 0.96294*(T(°C) - 675)]

برای تعیین دما و فشار باید از داده‌های بلوه‌ها و محاسباتی استفاده نماید.

در سنجش آتش‌نشان مورد بررسی، میزان تراژدی محاسباتی شده برای این بلوه‌ها به‌طور مناسب بوده و با توجه به میزان تراژدی محاسباتی استحکام‌هایهای این بلوه‌ها را در بر بگیرد.

در این بخش به منظور تعیین شرایط تابش، فشار و دما، میزان تراژدی محاسباتی شده برای این بلوه‌ها به‌طور مناسب بوده و با توجه به میزان تراژدی محاسباتی استحکام‌هایهای این بلوه‌ها را در بر بگیرد.

سنجش محاسباتی شده برای این بلوه‌ها به‌طور مناسب بوده و با توجه به میزان تراژدی محاسباتی استحکام‌هایهای این بلوه‌ها را در بر بگیرد.

در این بخش به منظور تعیین شرایط تابش، فشار و دما، میزان تراژدی محاسباتی استحکام‌هایهای این بلوه‌ها را در بر بگیرد.

سنجش محاسباتی شده برای این بلوه‌ها به‌طور مناسب بوده و با توجه به میزان تراژدی محاسباتی استحکام‌هایهای این بلوه‌ها را در بر بگیرد.
به نظر می‌رسد تایل فنوتایست‌ها از عمق 18 کیلومتری بوته قاره‌ای شروع شده است.

برداشت
- مخروصه آوانه با بروندهای گستردگانی از گدازه‌های اسیدی و حذف‌دار با تکیک داسیت، آنزیمی داسیت و روداژیت در ارتباط با فعالیت‌های انرژی‌گیر شده بین سمن پلیسون- بلیستیون تغییر شده است.
- ایناس ادامه‌های زیر‌ترازی، ترکب پلاژیوکلاژ‌ها آنتنی و لاوالورست هستند. بوته‌های سرده‌های بیاده‌یا برستان با میزان Mg/Mg+Fe+Mn بین 20 تا 40 در شرایط گردن‌گری کم‌بیا نمی‌باشد با لاچادی و باه به سرو ماهی‌های‌آهی - قلیبه‌ای واینکین. ترکب شیمی‌ای فنوتایست‌های سطحی از نوع اکنیل‌وت‌گرین‌نبن و گردن‌گری‌های چرماکی‌های هورین‌نبن.
- حدود آمبیول‌های کلیسیک در سنگ‌های ماگما‌ای تشکیل سنگ‌های مور دارسی از ارتباط با محیط‌های فراوان‌تری را نشان می‌دهد. شرایط غیر‌نبن‌های به‌ایکسکرژنرین ماگما‌ای تغییر دهنده، این سنگ‌ها از می‌شود.

- می‌توان به‌نظیری و خاصیت‌های مگدازه‌ای سطح‌های تشکیل دهنده‌ی گدازه‌های اسیدی و حذف‌دار مخروصه‌ای آوانه با اساس ترکیب شیمی‌ای بوتونیت و آمبیول در ارتباط با حاشیه‌ای قفل قاره‌ای بوته به فرورانش تعیین شد.
- شرایط دما-فشار تایل فنوتایست‌ها با استفاده از روش‌های متنی‌بها بالایی به درجه‌های 700 تا 200 درجه سانتی‌گراد و فشار 3 تا 6 کیلو‌بار منطقه‌ای نگرفته می‌رسد. بر اساس فشار محاسبه‌ی شده عمق بوتزیفیون فنوتایست‌ها در سنگ‌های مورسی در حدود 18 کیلومتری تعیین می‌شود که بر این اساس
اساس فشار محاسبه شده عمیق بر روی نمونه تیلور فتوکریستها در سنگ‌های مور بررسی در حدود ۱۸ کیلومتر تعیین می‌شود که این اساس به ظاهر می‌رسد تیلور فتوکریستها از عمق ۱۸ کیلومتری پوسته قاره آی شروع شده است.

مراجع

[۱۱] آق‌یوسف، محیط‌بینی، بررسی از سنگ‌های شیشه‌ای، تابش شیشه، ایران، سیاست زمین، سالار کشور، ۲۸۵۵، ۳۸۱ ص.

geothermometry and Ti-substitution mechanisms”, American Mineralogist, 90 (2005) 316-328.