بررسی کانی سازی اسکارن مزروعه، شمال اهرب، با تکیید بر مطالعه میانمارهای شاری

مهدی غارسی، ابررسا، محمد یزدی
گروه زمین شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی
(دریافت مقاله: 15/12/99، نسخه نهایی: 16/5/2000)

چکیده: کاناس اسکارن مزروعه در کمربند فلزایی قفاض کوچک - البرز غربی بر اثر تزریق توده گرافیت‌های شیوردار به سینولوژی به دو عنصر تمام‌داشتنی و افزایش میزان توده ت-CN ایجاد شده است. تکیه کاتی روی فازی شاره شیرین، پیروی، کاقالیپسیت، نیز، هیمالین، خون، و مالاکیت است و نیز در این مدل در مراحل اسکارن پسونده ایجاد شده است. نتایج تحقیق نشان داد که در بانه‌های بین اسکارن پسونده برای ابتکار بوده شیره دارگی نوع (L+V) با شرایط کنار تا متوسط 15/74 درصد وزنی نمک (L+V+S) و گستره دیمی شش‌گو 10 تا 42/73 درصد وزنی نمک (L+V+S) و گستره دیمی شش‌گو 275 تا 427 درصد جهت نگهداری به دو در مرحله اسکارن پسونده ایجاد شده‌اند. شناسایی میانمارهای شاره‌ای نوع (L+V) و نوع (L+V+S) با ترتیب شاره‌های دیگرگونی و ترکیب ماهگمی - شورابهای سطحی هستند. دو فرآیند آمپختگی هم‌دام شاره‌های بان تعریق و رقیق شگنه سطحی شاره به اثر مخلوط شدن آب‌های جوی با شاره‌های ماهگمی – دیگرگونی عامل اصلی تکوین شاره‌های اسکارن هستند. فشار شاره در زمان تشکیل کاناسکن در حدود 1000 نمک و دیمی شش‌گو 275 تا 427 درصد جهت نگهداری به دو این اساس می‌توان کاناس اسکارن مزروعه را با تغییر تشکیل 350 تا 400 متر نسبت به سطح اکسیاسیمی، به عنوان یک کاناس اسکارن که زمین‌نوردی کرده.

واژه‌های کلیدی: کمربند فلزایی قفاض کوچک - البرز غربی - کاناس اسکارن - مزروعه - میانمارهای شاری - ریزدانسی

مقدمه

کاناس اسکارن مزروعه از جمله کاناس‌های موجود در کمربند فلزایی قفاض کوچک - البرز غربی است. این کمربند از کوه‌های قفاض تا غرب رشته کوه البرز در ایران در ناحیه آذربایجان امتداد دارد [1] و در درباره‌های کاناس‌های اسکارن، نورفیرو و فراگمیتسی و سیس- متدی ممکن به سیب‌مرزی در ایران، با توجه به اینکه سال‌ها گذشته است، بررسی‌های اختری و مختلفی بر شکستن که در تحقیقات حفاظتی ممکن است او آن در مسیر ایران، توزیع ممکن است در این اکتشافات در میدان‌های مختلف می‌تواند جزئی از نظر مبانی بررسی میانمارهای شاری در کاناس‌های اسکارن از نظر می‌تواند با توجه به اینکه تحقیقات حفاظتی در مسیر ایران، توزیع ممکن است در این اکتشافات در میدان‌های مختلف می‌تواند جزئی از نظر می‌تواند با توجه به اینکه تحقیقات حفاظتی در مسیر ایران، توزیع ممکن است در این اکتشافات در میدان‌های مختلف می‌تواند جزئی از نظر می‌تواند با توجه به اینکه تحقیقات حفاظتی در مسیر ایران، توزیع ممکن است در این اکتشافات در میدان‌های مختلف می‌تواند جزئی از نظر می‌تواند با توجه به اینکه تحقیقات حفاظتی در مسیر ایران، توزیع ممکن است در این اکتشافات در میدان‌های مختلف می‌تواند جزئی از نظر

mehdigharesi@gmail.com

*توییسته مسئول، تلفن: 09177210649، پست الکترونیکی:
هب، گستره نوع S و یک نمونه در گستره نوع I قرار می‌گیرند [17-20]. با استفاده از نسبت مقادیر عناصر کمیاب Y، Nb، Rb در نمونه‌ها متغیر است. سنگ‌های گرانیت‌پی‌پی بر اساس نمودار شکل ۲ افزایش می‌یابد. همچنین بر نمودار شکل ۲ نمونه‌ها در گستره نیمه قلبی و در نمودار شکل ۲ کل نمونه‌ها در گستره سنگ‌های کلیسی قرار گرفته‌اند. بر اساس نمودار تفکیک زاپ و گرانیت‌پی‌پی (شکل ۲)

شکل ۲ (الف) موقعیت نمونه‌ها در نمودار رده‌بندی سنگ‌های نفوذی [۱۸]. (ب) نمودار Na₂O و K₂O نسبت به SiO₂ که در آن نمونه‌ها در گستره تابع قلبی قرار می‌گیرند. (پ) نمودار Na₂O نسبت به K₂O جهت تعیین راهی‌گیری نمونه‌ها می‌تواند به شکل جهت در بخش گرایی‌ها گرایی‌ها گرایی‌ها که در آن نمونه‌ها در ۲۰.۱۹] به داشته باشند. (ت) نمودار Na₂O و K₂O نسبت به SiO₂ که براساس آن نمونه‌ها جزو نمونه‌های کلسیمی محسوب می‌شوند.

شکل ۳ موقعیت زئولوفیتیکی نمونه‌های نفوذی در نمودار Rb/Y+Nd [۱۸].
سنگ‌گنگی اسکارن در مزرعه گیاهی با سنگ‌های کربناته یک اثر اسکارن کاربن - اسیدوت گیاهی به رنگ قهوه‌ای به صورت نوار باریک و بلندی به ضخامت 30 تا 40 متر در سراسر به شمار هرگیاه اسکارن گسترده که مرز آن توده گیاهی به گل‌سیع مکعسوس است. در نمونه‌های دستی رنگ سبز روند تا قهوه‌ای دارد و کاربن، اسیدوت، کاربن در منطق نکته جر می‌باشد دیده می‌شود. از نظر میکروسکوپی این سنگ‌های بافت ریزدانه‌ای نا نهای برای دانه، بلوره نیمه‌شکل در لولی با ارتفاع‌های تقریباً یکسان هستند و کالی‌های اصلی شلیر گیاهان، اسیدوت، اکسیتیل، کاربن، گروه‌های توده و سرسبزی هستند.

کاتی‌سازی در کاسار مزرعه

در کاسار مزرعه پیش‌تر کالی‌زایی فلزی به شکل برون اسکارن و به طور کلی همراه با دگرسانی‌های پیش‌باتک و کلرینی به شکل مسی‌ها و زهگا - رگ‌چه و در واحد کاسار - اسیدوت گیاهی صورت گرفته است (شکل 3). ترکیب کالی-سنگ‌های قهوه‌ای رابطه، کمیتی و نیز کالی‌های فاز برون‌زد همانی نیز در سنگ‌های اسکارن در کاسار مزرعه می‌باشد. سنگ‌های اسکارن در کاسار مزرعه می‌باشد. این سنگ‌ها به شکل برون و رنگی به رنگ می‌باشند. شکل‌گیری است ولی سنگ‌های منطق نکته می‌باشد و این شکل‌ها به رنگ می‌باشد. شکل‌گیری است ولی سنگ‌های منطق نکته است. در این شکل‌گیری است ولی سنگ‌های منطق نکته است. در این شکل‌گیری است ولی سنگ‌های مسی و هیدروکسید مسی کالی‌زا (پیرویت در کاسار مزرعه) کمیتی و نیز کالی‌های فاز برون‌زد همانی نیز در سنگ‌های اسکارن در کاسار مزرعه می‌باشد. سنگ‌های اسکارن در کاسار مزرعه می‌باشد. این سنگ‌ها به شکل برون و رنگی به رنگ می‌باشند. شکل‌گیری است ولی سنگ‌های منطق نکته است. در این شکل‌گیری است ولی سنگ‌های منطق نکته است. در این شکل‌گیری است ولی سنگ‌های مسی و هیدروکسید مسی کالی‌زا (پیرویت در کاسار مزرعه) کمیتی و نیز کالی‌های فاز برون‌زد همانی نیز در سنگ‌های اسکارن در کاسار مزرعه می‌باشد. سنگ‌های کاسار اسکارن‌زایی و کالی‌زایی اکسیس (مالائیت) در سطح مشخص است.

شکل 4 نمایی از پهنه اسکارن در مجاورت توده تندی کالی‌زایی اکسیس (مالائیت) در سطح مشخص است.
شکل ۵ (الف) نماهایی از همرشدی کالکوپیریت و بورنیت در یک نمونه اسکارن گرانیت دار. (ب) نماهایی از همرشدی کانه‌های در یک اسکارن گرانیت دار شامل همانیت، کالکوپیریت و بورنیت. (ت) نماهایی از شرایط نمونه اسکارن گرانیت که در جانه‌بندی بورنیت توسط کالکوپیریت تصویر می‌گردد. (پ) بورنیت، کالکوپیریت و همانیت، پیریت، همانتیت، کوئیلیت، Cp، Bn، Hm، Cv، Bp.

<table>
<thead>
<tr>
<th>وظیفه</th>
<th>استقامت</th>
<th>نسبت</th>
<th>سطح</th>
<th>نسبت</th>
<th>شرکت</th>
<th>استقامت</th>
</tr>
</thead>
<tbody>
<tr>
<td>استریتو</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>میکروآرال</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>میکروپتی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>میکروپتی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پاکشنین</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پاکشنین</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پاکشنین</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پاکشنین</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پاکشنین</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پاکشنین</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۶ دنباله کانژرایی کانه‌ها و کانی‌های کانژرایی گرانیت.
بررسی میانبارهای شاری
بررسی دمای تشکیل کلسنها، شوری و ترکیب شیمیایی شارهای کانی‌ساز و فشار حاکم بر میزان کانی‌سازی در شاخت نوع کانی‌سازی منطقه و اثرات الگو پیشگویی بر سیاس مهم و کارساز است [33]. شارهای کانی‌سازی که در میانبارهای شاری به دام افتاده‌اند می‌توانند در اثر کانی‌سازی، شکاف خاصی، مادگی و چند با هم از ترکیب شیمیایی می‌توان طبیعتی از دمای نوع شوری و فشار کانی‌سازی در زمین به دام افتاده به دست آورد [34]. میانبارهای شاری در منطقه برای کانی‌های شفاف کارتر و کلیست به دست آمدن، ایندیت است. میانبارهای شاری در میزان کانی‌سازی ده‌ها مقطع دبیر صیقل بای خصوصاً تقریباً ۲۰۰ میکرون (متوسط ۱۵۰ میکرون) از رگه کشته کارتر و کلیست هم‌ساخته با کانی‌ای تهیه شد و تعدا ۱۰۰ کانی‌سازی می‌باشد که همه آنها میان‌بارهای اولیه بودند.

مورد آزمایش بررسی میان‌بارهای شاری در اثر تشکیل کلسن‌ها و چربی در میان‌بارهای نمایشگاهی کلیاک در منطقه، افزایش میزان میکروبیک و متغیر gutta (فراوری مواد غذایی) و گرم‌شناسی جوهر (Gutta-ThMS600) را که به روش کانی‌سازی Stage:THMS600 و به مکانیکی کنندگی Linkham نصب است در مواد گرمسار. دانه حرارتی میزان صورت گرفت. دانه حرارتی دستگاه ۱۳۰-۱۴۰ درجه سانتی‌گراد است. برای واسنجی دستگاه برای گرمیش با دقت

شکل ۷ نمونه میان‌بارهای یزد مسنجی
بررسی یزد مسنجی
دانه گرما در شکل‌های یزد مسنجی به جمعیت هستند (شکل ۸). برای رده بندی میان‌بارهای شاری برایه نسبت‌های فاز جامد، مایع و گاز از روش استفاده شده در مرجع [37] که روی رایج از استفاده شده. بر اساس سنجش‌گزاری صورت گرفته و به فهم می‌توان در دسته‌بندی داده شده که عبارتند از:

الف: نوع دو فازی شامل مایع، گاز و غنی از مایع (L+V)

بیشترین میان‌بارهای شاری مشاهده شده از این نوع است. در این نوع بیشترین حجم میان‌بارهای شاری از فاز آبیک نشان دهنده است و حجم حباب‌های دیگر نسبت به فاز مایع ناچیز است. از این میان‌بارهای شاری (L+V) به عنوان نمونه (91 درصد) در میان میان‌بارهای شاری (98 نمونه) مورد استفاده قرار گرفته است.

ب: نوع ستاره‌ای شامل مایع، جامد و جامد (L+V+S)

که به فاز جامد را هالیدی و نمک‌های دیگر تشکیل دهنده. تعداد 11 نمونه از این میان‌بارهای (9 درصد) در میان میان‌بارهای شاری (98 نمونه) شده وجود دارد.

بررسی به منظور بررسی میان‌بارهای شاری در مقایسه با کانی‌ای تهیه شده و تعدا ۱۰۰ کانی‌سازی می‌باشد که همه آن‌ها میان‌بارهای اولیه بودند.
ذوب 94.3 ℃ - استفاده شد. آهنگ عملیات سرمایش و گرمایش نیز بین 2 تا 8 ℃ در دفیقه متغیر بوده است. برای سرمایش با دقت ±0.2 ℃ و برای سرمایش با دقت ±0.6 ℃ از استاندارد هگران n با نقطه

شکل 8 (الف) نمایی از میانیابهای شاری دو فازی غنی از مایع (L+V) و (L+V+S) به شکل بلور مختل از فاز گاز (L+V+S) و (ب) نمایی از میانیاب با پرسبه شده (L+V) به شکل بلور مختل از فاز سه فازی (L+V+S). (ج) همان میانیاب در دمای 160 درجه سانتی‌گراد، دیده‌شده که بلور هالیت گرد شده است.
آزمون سرمایش

با همگین کردن فازهای درون میان‌براهی‌های شاری به فاز مایع و به دست آوردن دمای همگن‌شدنگی، کمینه دمای تنشک‌کالساز از بین شده که بر اساس میان‌براهی‌های شاری نوع (L+V) در گستره دمایی 120±5 درجه سانتی‌گراد میان‌براهی‌های شاری نوع (L+V+S) در گستره دمایی 277±1 درجه سانتی‌گراد میان‌براهی‌های شاری نوع (L+V+S) در گستره دمایی 219±4 درجه است (شکل 9 و جدول 1). بر اساس نمودار نسبت به دمای همگن‌شدنگی میان‌براهی‌های شاری برای میان‌براهی‌های شاری (L+V) 18 g/cm³ و برای میان‌براهی‌های شاری (L+V+S) 61 g/cm³ نسبت به دمای همگن‌شدنگی میان‌براهی‌های شاری [42] (شکل 10) همه میان‌براهی‌های شاری در گستره کانترابای اسکارن‌های گرندری (شکل 10).

شکل 9 (الف) نمودار ستونی مقادیر دمای همگن‌شدنگی میان‌براهی‌های شاری نوع (L+V+S) (ب) نمودار ستونی مقادیر دمای همگن‌شدنگی میان‌براهی‌های شاری نوع (L+V+S) (ب) نمودار ستونی مقادیر دمای همگن‌شدنگی میان‌براهی‌های شاری نوع (L+V+S) (ب) نمودار ستونی مقادیر دمای همگن‌شدنگی میان‌براهی‌های شاری نوع (L+V+S).
جدول 1: نتایج ریزداشتی میانبارهای شاری.

<table>
<thead>
<tr>
<th>کانی میزان</th>
<th>فاز</th>
<th>تعداد میزان</th>
<th>اندازه (μm)</th>
<th>شوری %</th>
<th>دمای همگن شدن</th>
<th>Th (total) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کوارتز و کلیسیت</td>
<td>L+V</td>
<td>98</td>
<td>17-26</td>
<td>1,54</td>
<td>100</td>
<td>250-360</td>
</tr>
<tr>
<td>کوارتز</td>
<td>L+V+S</td>
<td>11</td>
<td>21-31</td>
<td>1,77</td>
<td>100</td>
<td>270-375</td>
</tr>
</tbody>
</table>


خاستگاه شاره‌های کانناساز برای تغییر خاستگاه شاره‌های کانناساز موجود در میانبارهای شاری از نمودار مرجع [A3] استفاده شد. بر اساس نتایج به دست آمده میانبارهای نوع (L+V) از خاستگاه شاره‌های دگروتی و میانبارهای نوع (L+V+S) از خاستگاه شاره‌های ترکیبی ماگماتیک - جوی نا شوره‌های سطحی هستند (شکل 11).

(10) نکات اندازه‌گیری میان‌مصرف در اصل چهار عامال تعیین دما (سرشانه شاره‌های کانناساز) تغییر فشار، تغییرات شیمیایی ناشی از واکنش شاره کانناساز، سنگ میزان و تغییرات شیمیایی ناشی از پیدایش امیختی و جوشش در شکل جدید خازن مورد نیوشت کاننزا از همیت بالایی برجوژدنان [A4]. جوشش و آمیختگی شاره‌ها و عامال مهمی هستند که ممکن باعث ارتباط شدن سریع شاره‌های ماگماتیک و ایجاد شرایط لازم جهت تنشش کاننزا در گستره سنگ‌های میزانی می‌شوند [A3]. جهت بررسی فراشیداد تکرار شاره‌های کانناساز بر اساس سیریه‌های اندازه‌گیری شده نسبت به دمای همگن شدن اندازه‌گیری از نمودار دما در مرجه [A3] استفاده شد (شکل 12). همه نمونه‌های مور دو اطراف می‌گیرند که...
پایداری همبافت‌های کلرادی و تنفس‌های کل‌های سولفیدی می‌شود. نمودار شکل 11 در مورد خاستگاه میانپارهای شارای نیز خاستگاه ترکیبی شاره‌های مادگامی - جوی را برای این دسته میانپاره‌ها نمایان می‌کند.

شکل 11 نمودار تعیین خاستگاه شاره‌های گرمایی بر اساس داده‌های شوری و دمای همگی شدگی میانپاره‌های شاری.

شکل 12 نمایش دگرگونی‌های اعمال شده بر محلول‌های گرمایی با استفاده از نمودار دمای همگی شدگی نسبت به شوری [23] با توجه به الگوی توزیع بهتری داده‌های منطقه، درون آمیختگی هم دما و رفیقی سطحی شاره‌های مادگامی-دگرگونی قابل مشاهده است.
زرفای تشکیل کانسپتیک به منظور برآوردن زرفای کانسپتیک نسبت به سطح استیماتی قدیمی، از منحنی ارائه شده در مرحله [48] استفاده شده است (شکل 12). سفر استیماتی مربوط به آب خالص بوده و منحنی به دو شرایط فشار استیماتی را با توجه به میزان شوری شاره نشان می‌دهد. با توجه به مقدار میانگین شوری میانمارهای نوع (L+V) و (L+V+S) که به ترتیب برابر با 64/76 و 35/76 است و مقدار میانگین دما همگن‌سازی دو میزان نسبت به سطح استیماتی قدیمی تعیین شد که به شکل دست آمده از بررسی‌های سنتگن‌گاری از جمله بافت کناری و همچنین با فشار شاره به دست آمده از نمودار مرجع [12] (هرخوایی دار) (شکل 12).

فشار شاره‌ها در زمان به کلام گیری اسکارک
برای تعیین فشار وارد بر شاره در زمان به کلام گیری اسکارک از نمودار ارائه شده در مرحله [12] استفاده شد (شکل 12). برای اساس، فشار شاره در مرحله درگنهانی پسربندن با استفاده از هر دو نوع میانمارهای شاره از کمتر از 50 تا اندکی بیش از 150 با بیشتر از ترکیب میان‌اروا همگن‌سازی و یا روی (Ts NaCl<Th) منحنی اشباع کلرید سدیم قرار گرفته‌اند. بنابراین می‌توان چنین نتیجه گرفت که فشار وارد بر شاره کانسپتیک با طور میان‌اروا در حدود 100 با بیشتر است که با زرفای تشکیل کانسپتیک که بین 350 تا 400 متر دست آمده است همخوایی دارد (شکل 12).

دمای تشکیل کانسپت
براساس مقادیر دمای همگن‌سازی همیانمارهای شاره و فشار شاره کانسپتیک با استفاده از نمودار ارائه شده در مرحله [5] و با توجه به شکل 12 الف شاره‌ها بیشتر در فشار کمتر از 150 با اندکی بیش از 150 با توجه به سنتگن‌گاری و همچنین دمای یکپاکتیشن شدن کانسپت که به توجه به مقدار دمای همگنبندی همچنین نشان می‌دهد در حدود 360 درجه اصلی است. دمای همکانسپتیک کانسپتیک را می‌توان در حدود 250 تا 340 درجه سانتی‌گراد در نظر گرفت (شکل 14).
شکل ۱۲ (الف) نمودار تعبیه فشار شاره‌های کاناسار بر اساس مقادیر شوری و دما و همگنی شدگی میان‌بارها [۴۹] (ب) نمودار تعبیه ژرفای به دام افتادن میان‌بارها بر اساس دما و همگنی شدگی میان‌بارها و شوری شاره در زمان به دام افتادن میان‌بار [۴۸].

شکل ۱۳ نمودار تعبیه دما و تشکیل کاناسار بر اساس دما و همگنی شدگی میان‌بارها و فشار-عمق معین شاره‌ها در زمان تشکیل کاناسار [۴۱].

References


References

Conditions of Dardvey Iron Skarn Based on Mineralogy and Fluid Inclusion Evidences, Sangan Area (Khorasan Razavi)


