کانی سازی و ارزیابی سیالات ماد در تشکیل کانسار فلوریت کوه سفید
شمال غربی تربت جام

لیلا یازخ زاده، خسرو ابراهیمی نصر آبادی، حمیدرضا وطن پور، فرزین قانی، جواد درویشی خاتونی

1- گروه زمین شناسی، دانشگاه علوم دانشگاه فردوسی مشهد
2- دانشگاه فرهنگیان مشهد
3- مرکز زمین شناسی و اکتشافی ابادان

(دریافت مقاله: 96/10/24)

چکیده: ذخیره معدنی فلوریت کوه سفید، در توده روستای کوه سفید در 110 کیلومتری جنوب شرقی مشهد قرار دارد. یکی از این سایت‌های زمین‌شناسی برگرفته در منطقه مورد بررسی قرار گرفته است. کل هایا با امتداد شمال غرب- جنوب شرق و شمال شرق- جنوب غرب در این ناحیه دیده می‌شود. رنگ‌های فلوریت دارای روندهای مختلفی با ضخامت ۲ تا ۴۰ متر و طول ۱۴۰ متر هستند. محلول‌های گرمابی با دما بین دسته ۱۸۱ تا ۱۴۵ درجه سانتی‌گراد و میانگین ۱۵۳ درجه سانتی‌گراد گزارش شده است. دیگر تغییرات آنها را نشان می‌دهد. این تغییرات با وجود مشابهی میان سایت‌های دیگر، فلوریت این منطقه از نوع گرمابی است.

واژه‌های کلیدی: فلوریت، سیال، تربت جام، کانی سازی

مقدمه
فلوریت یک کانی رایج است که به‌طور رایج در کانسارهای برگ و کوبک در بسیاری از مناطق بایت می‌شوند. در محیط‌های زمین‌شناسی گوناگون، فلوریت دارای کوه‌های گرمابی می‌باشند. در بالاترین پنجره این کوه‌ها به‌طور اکتشافی شده گزارش می‌شود. در این کوه‌ها، فلوریت در مراحل آخر تولید‌گرما، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم دارد، به‌طور خاص در شرایطی که محیط‌گرمایی به‌طور مداوم д.
دیجیان [۳] اشاره کرد، فلوریت در ایران بیشتر به صورت کانی همراه با کانسارهای فلزی چون سرب و روی و همچنین در توپرهای آذین تپه‌ای با سیلیکات رسوبی، ده‌ها، استفاده می‌شود. با جغرافیایهای زمینی شبیه سازی‌های مختلف در ناحیه‌ای از کانسارهای فلزی ایران در شکل ۱ نشان داده شده است [۴].

موقعیت پرخی از کانسارهای فلزی ایران بین ۱۵ درجه شمالی، در منطقه مورد بررسی این پژوهش به طول جغرافیایی ۵۲ و عرض جغرافیایی ۴۲ درجه شمایی، در قسمت شرقی کشور برنامه‌ریزی گردیده است.

شکل ۱ موقعیت پرخی از کانسارهای فلزی ایران بین ۱۵ درجه شمالی، در منطقه مورد بررسی این پژوهش به طول جغرافیایی ۵۲ و عرض جغرافیایی ۴۲ درجه شمایی، در قسمت شرقی کشور برنامه‌ریزی گردیده است.
شکل ۲: نقشه ساده شده زمین‌شناسی منطقه کوه صفید که موقعیت معدن فلوریت کوه صفید را نشان می‌دهد (سمازمان زمین‌شناسی گچ‌بری).
روش بررسی
در این پژوهش، بررسی‌هایی در دو بخش صحراوی و آزماشگاهی انجام گرفت. در بخش صحراوی، بایستی جهت بررسی تشکیلات و سایری‌های زمین‌شناسی، ویژگی‌های ماکروپالیستیک از سنگ‌های موجود، ماهینه بخش گرما، رگه و رنگ‌های کاتی سازی و ارتباط آنها با روند دری و شکاف‌ها و گسل‌های موجود در منطقه، صورت گرفت. در این مرحله با توجه به رنگ‌های متغیر، انتخاب 12 منوی فلوریت در دو رنگ بنفش و سیاه و همچنین 21 نمونه از سنگ‌های رسوبی در برگیرنده‌ها کلیسازی برای بررسی گردید. نمونه‌برداری بر اساس ارتباط کانسپراسیون با سنگ‌های درون-گیری روابط صحراوی بین اعداد فلوریت‌های موجود، پویایی انتخاب رنگ‌ها، رنگ‌ها، تغییرات افقت و فاصله آنها در نهایت شرایط زمین‌ساختاری، بیشتری در منطقه و رژیم‌شناسي سیالات در‌گیری، ۶ مقطع دو میلیمتری از فلوریت‌ها تهیه شد و بررسی سیالات‌درگیرگر که شامل سنگ‌نگاری‌های، دما‌سنجی و تغییر در جهت شوری است در مجموع ۱۴۰ سیال دریگر در مقاطع موجود انجام شد. بررسی‌های سنگ‌نگاری‌های سیالات با استفاده از ماکروپالیستیک قطعی مدل‌سازی مجهز به نور عبوری و بازتابی در دانش‌های فلوریتوسی مشهد انجام شد. در این بررسی‌ها نوع سیال درگیر، فاز غالب، شکل، طول، عرض و قطر آنها تعیین شد. همچنین درجه شوری و دمای همگنی-شکل‌گیری سیال‌ها بررسی شد.

بحث و بررسی
چکنگی رخداد و کاتی‌سازی بررسی‌های انجام شده در این پژوهش نشان می‌دهد که سیالات ماکمالی حاوی F (فلوریت) از یک توده نفوذی احتمالاً توده کاوزنس دروزدرزی واقع در ده کیلومتری جنوب شرقی ذخیره معدنی فلوریت کوه سفید، نشان دهنده‌های ماکمالی و سیالات کانساز پس از طی مسیری، وارده در فلوریت‌های سنگ-کلسیم سنگ‌پیز، با کاوزنسی و یا واکنش داده و به صورت رگه و رنگ‌های فلوریت، کاوزنس، کلسیم و باریت [1111] در آماده‌کردن که از لحاظ زمان شکل گیری فقط شامل یک مرحله کاتی‌سازی اولیه است. در شمال منطقه مورد بررسی، روند رگه‌ها به طور تقریبی شمال-جنوبی بود.
شمال غربی منطقه بیشتر به رنگ سیب مشاهده می‌گردد (شکل های ۴ تا ۷). در بخش شمالی منطقه مورد بررسی که کمالی‌نیکانی‌ها نسبت به دیگر کناره‌های داخلی منطقه، بخش کناره‌هایی که ارتباط را با زمین‌ساخت دارد، رخ داده است. در این منطقه سنجش پهناه‌گیری شده که توسط سیالات ماگمایی، با روش عناصری پنهان F و CO۲ ترکیب و افزایش Ca به سبب کمیابی قطعات تشکیل دهنده نهایی فلوریت-کلسینی تشكل داده‌اند. این نوع کناره‌گری که به پرسته‌های مورد نظر است، با ابعاد کوچک و در کنار رگه‌های فلوریتی، حدود ۱۰٪ از کناره‌های منطقه را به خود اختصاص می‌دهد که به‌دست نتایج دکتران اکسپلورهای آهن قرار گرفته است و در بخش کناره‌های قرمز، نارنجی و زرد دیده می‌شود (شکل ۴ ج).

با شیب به سمت جنوب غرب پراود شده است. در جنوب منطقه نیز به سمت جنوب غرب پراود شده است. در جنوبی این منطقه نیز ۲ رگه به سه بخش بیشتر از ۲.۵ متر در راستای شمال شرقی - جنوب غربی (در امتداد کناره) و شیب ۳۰ درجه به سمت جنوب شرقی در میان سنج میزبان مادستون کوارتزی آواری کناره‌های شناخته (شکل ۴ اف). رگه‌های کناره-سازی فلوریت در جنوب منطقه بیشتر همراه با رگه‌های کناره-سازی کوارتزی به شیب و بیشتر در شمال منطقه با رگه‌های کلسینی‌سازی به‌شکلی قطعات تشکیل شده‌اند. در میان سنج میزبان، تعدادی کناره‌های کوارتزی آواری در جنوب شرقی منطقه دیده می‌شود به رنگ بنفش و در مادستون کناره‌ای واقع در جنوب منطقه مورد بررسی گردیده کناره‌های به رنگ فلوریت و کوارتز در جنوب منطقه کو نیز می‌نمایی از رگه‌های کناره-سازی کوارتز، پ. رگه‌های فلوریت-کوارتز (جغد ۶ مشماره ۱ بهار ۱۳۹۷).
سنگ‌گاری توسط می‌شوند. در بیشتر سیالات در‌گیر، ماده اصلی آب و پس از آن می‌کسیده و نمک است. در برخی سیالات در‌گیر تغییر تازه‌گیر صورت می‌پیماید. انتقال مستقیم با ترکیب شیمیایی محلول کاندالار ارتباط مستقیمی با ترکیب شیمیایی محلول درازتر شیمیایی ماده ماده نیز براساس محتوای مشخص ساختاری، نوع مواد که در منشا دو بخش نیترات نیترات اصلی و درصد اپیکستیک دوو شیمیایی محسوب می‌خواهد تغییر می‌کند. ترکیب شیمیایی محلول کاندالار در میان‌شکل بیشتر به مخلوط مواد محلولی. ایجاد در نواحی که در آن سیالات با ترکیب استفاده 2.1.6 معمولاً در کاندالار کرده و فلورایت، هالیت اکسید، آپاتیت، دولومیت، اسپینال، باریت، توبر و کاسپیت سیالهای در‌گیر را جذب می‌کند.


gالسازی کاندالار، کلسیت و باریت و در کنار رهگیری فلورایت و در بیشتر سیالات در‌گیر. به دلیل هر چند این عملیات متغیر و در زمان‌های مختلفی به کاندالار خوردیده نشده است. به مصرف و ساختار ترکیب نیترات کاندالار تولید کننده‌ی به صورت می‌کند که در سیالهای پس از رسیدن به دلیل شکستگی‌ها کاندالار و فلورایت. کاندالار. فلورایت. باریت و کاندالار. کلسیت (شمال منطقه مورد بررسی) شده است. ضخامت خطره‌های نشان دهنده مقدار نسبی یک از کانالها متفاوت است. ضخامت-های بیشتر نشان دهنده کاندالار سیاله در آن مرحله است و بررسی.

سنگ‌گاری سیالات در‌گیر
سیالات در‌گیر بخش چندی‌نام‌یابی از هر سنگ یا کاندالار و بررسی آنها به انتزاع بررسی احتمال‌های لازم به شیمیایی محلول و کاندالار به دلیل نیترات زمان‌های مختلفی از این عملیات مناسب است. کلیه سیالات در‌گیر متناسب با انتزاع یا با انتزاع در درک فصلی ما از حمل و تررس با کاندالار داشته‌اند [126]. به مرور بررسی سیالات در‌گیر برازیست. می‌تواند مدل‌سازی جامع و زمان‌های شیمیایی در گذشته و شکل‌گیری کاندالار از ایجاد خاصی برخوردار برنده و نشان‌ها از درک فعلی ما از حمل و تررس با کاندالار داشته‌اند [126]. به مرور بررسی سیالات در‌گیر برازیست. می‌تواند مدل‌سازی جامع و زمان‌های شیمیایی می‌تواند مدل‌سازی جامع و زمان‌های شیمیایی

این نتایج حاصل می‌تواند برای بررسی محیط کاندالار در کنار بیشتر نشان دهنده کاندالار سیاله در آن مرحله است و بررسی

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Primary</th>
<th>Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 5 تولید کاندالار کاندالار سیاله در فلورایت سفید‌گیر.
در این پژوهش، سیالات بر اساس ویژگی‌های سنگ-نگاری در دمای اتاق 
(50 °C) و بر اساس معیارهای ارائه شده توسط رود، لدگاندیتکن و رتلوندز [18] ردیده‌دیگر
شدند. اگرچه سیالات به شکلی مشابه سیال به شکل متنوع دیده شوند، ولی شکل‌های منفی بلو در سیالات بافت
شدید که فلوریت سخت ایجاد است. سیالات مشابه نیز به ویژه در کانال‌های باربرت و گالرین و جود دارد. شواید
باریک‌شکنی و نشان نیز در سیالات از دیده می‌شود. گشته شد سیالات در گربه متنوع بوده و تا حدودی توسط
فلورشیسی‌کان میزبان کننده می‌شود. سیالات در همکناری می‌توانند با به خود بگیرند
باین حفظ شدن برگرفته یکدیگر و به ساختمان بالا، یک رنگ و اثر نمایان، با رنگ نیز به ویژه در کورنار رایج هستند.
بله در طول سطوح رطوبت می‌تواند شکل مشابه سیال به ویژه در کورنار رایج می‌شود. گشته شد سیالات در گربه
ولایه و تخت بیشتر در کانال‌های کشیده و شفاف می‌تواند توسط معیارهای دیگر
رادن در حالی که سیالات در گربه لوله‌ای و تخت بیشتر در کانال‌های
کشیده و شفاف می‌تواند توسط معیارهای دیگر
رادن در حالی که سیالات در گربه لوله‌ای وتخت بیشتر
در کانال‌های کشیده و شفاف می‌تواند توسط معیارهای
دیگر
به شکل اولیه، نامی و نامی کاند مشاهده می‌شود؛ که
قرار است نتایج بدتر بود. این گروه
اگرچه برای پیش‌بینی رایج است. در منطقه
ورپرستی، نامی‌های درست بروز و شفاف فلوریت برداشته شد که
در آن‌ها انواع سیالات کانالار فلوریت سیدی‌کو به صورت نک فاز

شکل 6: سیالات در گربه اولیه، فاز ماپی (V)، فاز گاز (L)، سیالات در گربه نانویه (S)، ب: سیالات در گربه نانویه (L+V) و سیالات در گربه نانویه (V).

جدول 1: سنجشگران سیالات در گربه در منطقه کوه سیف.

<table>
<thead>
<tr>
<th>نوع سیال</th>
<th>شکل</th>
<th>عرض</th>
<th>طول</th>
<th>فاز غلب</th>
<th>فاز تانویه</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+V</td>
<td>1</td>
<td>0.3-2</td>
<td>20</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>L</td>
<td>2</td>
<td>0.3-2</td>
<td>20</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>V</td>
<td>3</td>
<td>0.3-2</td>
<td>20</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td>0.3-2</td>
<td>20</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>N</td>
<td>5</td>
<td>0.3-2</td>
<td>20</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>S</td>
<td>6</td>
<td>0.3-2</td>
<td>20</td>
<td>V</td>
<td>V</td>
</tr>
</tbody>
</table>

شکل 1: سنجشگران سیالات در گربه در منطقه کوه سیف.
روش است [۱۴]. میزان شوری محلول نیز می‌تواند از ۸۰٪ تا ۱۰۰٪ متغیر باشد. بیشترین شوری مربوط به محلول مائوگالی است. گردشگری ها که در دخاب برخی تحت تاثیر مستقیم محلول مائوگالی ایجاد می‌شوند، شوری بیش از ۲۰٪ دارد. در حالی که کمترین غلظت NaCl مربوط به کانال‌های گرومی است که آب‌های زیرزمینی بیشتری نش را در تشكل آنها ایفا نموده‌اند [۱۵]. برسی‌های داماسنجی در منطقه مورد بررسی با استفاده از سیالات درگیر در ۸ نمونه از کالیاه فلوریت صورت گرفت. در جدول ۲، متوسط داده‌های زمین- داماسنجی شوری و جغاید نمونه‌های مورد بررسی ارائه شده است و در شکل ۷ نمونه‌های فراوانی دمای همگن شدن سیالات درگیر (Th) و شوری و در شکل ۸ نمونه‌های پراکندگی دمای همگن شدگی- شوری در منطقه مورد بررسی با استفاده از نرمافزار Spss رشته است.

جدول ۲ متوسط داده‌های زمین-داماسنجی، شوری و چگالی نوای سیالات درگیر فلوریت کوه سفید.

<table>
<thead>
<tr>
<th>Density (wt%)</th>
<th>Salinity</th>
<th>Tm (°C)</th>
<th>Tm(L-V) (°C)</th>
<th>عرض حرارایی</th>
<th>طول جغرافیایی</th>
<th>نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.65</td>
<td>0.50</td>
<td>155</td>
<td>155</td>
<td>0.65</td>
<td>0.50</td>
<td>155</td>
</tr>
<tr>
<td>0.65</td>
<td>0.50</td>
<td>155</td>
<td>155</td>
<td>0.65</td>
<td>0.50</td>
<td>155</td>
</tr>
<tr>
<td>0.65</td>
<td>0.50</td>
<td>155</td>
<td>155</td>
<td>0.65</td>
<td>0.50</td>
<td>155</td>
</tr>
<tr>
<td>0.65</td>
<td>0.50</td>
<td>155</td>
<td>155</td>
<td>0.65</td>
<td>0.50</td>
<td>155</td>
</tr>
</tbody>
</table>

شکل ۷ اف: نمونه دمای همگن شدگی سیالات درگیر، ب: نمونه شوری سیالات درگیر.
شکل 8: نمودار پراکندگی شوری دمای همگن شدگی سیالات در گرداچین فلوریت کوه سفید.

همگنی کننده فراگرافی (5/5 - 10/1) قرار می‌گیرد. علاوه بر این، بررسی‌های دمآوری سیالات در گرداچین فلوریت کوه سفید که دمای تشکیل کانسار در گستردگی 5 درجه سانتی‌گراد و بیشترین دمای تشکیل همگن شدن سیالات 16 درجه سانتی‌گراد است. برای تعبیه درصد شوری در سیالات در گردآوری نمونه‌های رود بررسی از روش سردایش استفاده شد. در این روش ابتدا سیال درگیر در دمای 300 درجه سانتی‌گراد سر سیال تا به طور کامل یخ پزند و سپس یا یک روش آهسته و ناپایدار، دمای محضه را افزایش می‌دهند تا اولین قطعه سیال دیوبند تشکیل شود. دمای T_m شروع ذوب تکسیم‌های هیدراته و تشکیل اولین قطره نامیده می‌شود. با افزایش دمای سیال بخار، طولانی‌ترین بخش صفحه به دمای T_m تا دما که در آن اولین قطره پدیده بخار ذوب دمای T_m و یا دما نقطه هیدرالیز، نویم مکان‌های موجود در سیال و تا پنجم T_m و T_m تا کناره و در این دمای تا سر سیال را می‌توان به دست آورد. دمای T_m و به‌طور کل، سیالات با استفاده از ترمافلورین Flincor

با پرسی نمونه‌های دمای همگن شدگی و شوری، می‌توان گفت که رگه‌های فلوریت سطحی در دامای پایین (به طور میانگین 158 درجه سانتی‌گراد) و شوری پایین (به طور میانگین 5 - 6 درجه سانتی‌گراد) تشکیل شده و از آنگا که سیال و دما از تعریض مستقیم به نوع سیال سر سیال، با استفاده کانسارهای نوین نمونه‌سازی تعیین نمی‌شود. کانسارهای فراگرافی ایندا با ارتباط مستقیم به نوع سیال بررسی می‌شود که محلول مکان‌های اکسترالی از نوع فراگرافی است. کانسارهای فراگرامی ایندا با کانسارهای فراگرامی که در تنبیه فیلتر کیفیت مربوط به فعالیت آنت فشارها و در عمق کم و دمای کم تشکیل می‌شود و دمای آن از 50 تا 300 درجه متفاوت است، به‌طور مداوم تا 300 درجه نیز محصول است [19]. شوری اندازه‌گیری شده در


Ghaemi F., "1; 100000, Geological map of Neishabour", Geological survey and Mineral Exploration organization of Iran. (1378).


Roedder E., "Fluid inclusions as tools in mineral exploration" Econ. Geol. 72, (1977), 503–525.


