Volume 26, Issue 1 (4-2018)                   www.ijcm.ir 2018, 26(1): 195-208 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Riyahi Samani, Shabanian Boroujeni, Davoudian Dehkordi. Geochemistry and tectonic setting of granite-gneisses from Abadchi, north of Shahrekord. www.ijcm.ir 2018; 26 (1) :195-208
URL: http://ijcm.ir/article-1-1060-en.html
Abstract:   (4700 Views)
The granite-gneiss body of  Abadchi area (vicinity of Zayandeh-Rud dam) is a part of Sanandaj-Sirjan tectonic zone. The mineralogical composition of the granite- gneisses contains quartz, K-feldspar, plagioclase, biotite and muscovite and minor minerals of opaque, zircon, amphibole and allanite. The granite-gneiss rocks have been influenced by deformation dynamics and weakly Na-metazomatism. Geochemically, these rocks are calcic to calc-alkali, ferroan to magnesian, peraluminous to slightly metaluminous and are A to I-type granitoid. On the bases of chondrite-normalized REE diagram, they show a relatively enrichment in LREES rather than HREES with negative Eu anomalies. On primitive-mantle normalized spider diagrams, the rocks display relatively enrichment in LILE and LREE rather than HFSE which represent the magmatic rocks depending on arc and collision setting. This granite-gneiss is formed in post-collisional tectonic setting.
Full-Text [PDF 121 kb]   (1057 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Goodge J.W., Vervoort J.D., ''Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence'', Earth and Planetary Science Letters 243 (2006) 711–731. [DOI:10.1016/j.epsl.2006.01.040]
2. [2] Heilimo E., Elburg, M. A., Andersen T., ''Crustal growth and reworking during Lapland–Kola orogeny in northern Fennoscandia: U–Pb and Lu–Hf data from the Nattanen and Litsa–Aragub–type granites'', Lithos 205(2014) 112–126. [DOI:10.1016/j.lithos.2014.06.014]
3. [3] Kemp A., Hawkesworth C., ''Granitic perspective on the generation and secular evolution of the continental crust'', Treatise on Geochemistry. Elsevier Ltd (2003) 349–410. [DOI:10.1016/B0-08-043751-6/03027-9]
4. [4] Stremtan C.C., ''Mantle-crust Interaction in Granite Petrogenesis in Post-Collisional Settings: Insights from the Danubian Variscan Plutons of the Romanian Southern Carpathians'', 2014. Graduate Theses and Dissertations.
5. [5] Maury R.C., Fourcade S., Coulon C., Bellon H., Coutelle A., Ouabadi A., Semroud B., Megartsi M.h., Cotten J., Belanteur O., ''Post-collisional Neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab breakoff'', Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science 331 (2000) 159-173.
6. [6] Collins W. J., Beams S. D., White A. J. R., Chappell B. W., ''Nature and origin of A-type granites with particular reference to southeastern Australia'', Contributions to Mineralogy and Petrology 80 (1982) 189–200. [DOI:10.1007/BF00374895]
7. [7] Miller C., Schuster R., Klötzli U., Frank W., Purtscheller F., ''Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis'', Journal of Petrology 40 (1999) 1399-1424. [DOI:10.1093/petroj/40.9.1399]
8. [8] Vollmer R., ''On the origin of the Italian potassic magmas. 1. A discussion contribution'', Chem. Geol. 74 (1989) 229–239. [DOI:10.1016/0009-2541(89)90034-X]
9. [9] Peccerillo A., ''Multiple mantle metasomatism in centralsouthern Italy: geochemical effects, timing and geodynamic implications'', Geology 27 (1999) 315–318. https://doi.org/10.1130/0091-7613(1999)027<0315:MMMICS>2.3.CO;2 [DOI:10.1130/0091-7613(1999)0272.3.CO;2]
10. [10] Zeck H.P., Kristensen A.B., Williams I.S., ''Post-collisional volcanism in a sinking slab setting. Crustal anatectic origin of pyroxeneandesite magma, Caldear Volcanic Group, Neogene Alboran volcanic province, southeastern Spain'', Lithos 45 (1998) 499–522. [DOI:10.1016/S0024-4937(98)00047-4]
11. [11] Pearce J.A., Bender J.F., De Long S.E., Kidd W.S.F., Low P.J., Güner Y., Saroglu F., Yilmaz Y., Moorbath S., Mitchell J.G., ''Genesis of collision volcanism in Eastern Anatolia, Turkey, J. Volcanol'', Geotherm. Res. 44 (1990) 189–229. [DOI:10.1016/0377-0273(90)90018-B]
12. [12] Hildreth W., Moorbath S., ''Crustal contributions to arc magmatism in the Andes of Central Chile'', Contributions to Mineralogy Petrology 98 (1988) 455–489. [DOI:10.1007/BF00372365]
13. [13] Maury R.C., Sajona F.G., Pubellier M., Bellon H., Defant M., ''Fusion de la croûte océanique dans les zones de subduction/collision récentes : l'exemple de Mindanao, Philippines, Bull'', Soc. géol. France167 (1999) 579–595.
14. [14] Chappell B.W., White A. J. R., ''Two contrasting granite types'', Pacific Geology (1974) 8: 173-74.
15. [15] Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., "A geochemical classification for granitic rocks", Journal of petrology 42 (2001) 2033-2048. [DOI:10.1093/petrology/42.11.2033]
16. [16] Loiselle M.C., Wones D.R., ''Characteristics and origin of anorogenic granites, Geological Society of America'', Abstract with Programs 11(1979) 468.
17. [17] Collins W.J., Beams S.D., White A.J.R., Chappell B.W., ''Nature and origin of A-type granites with particular reference to southeastern Australia'', Contrib Mineral Petrology80 (1982) 189–200. [DOI:10.1007/BF00374895]
18. [18] Whalen J.B., Currie K.L., Chappell B.W., ''A-type granites: geochemical characteristics, discrimination and petrogenesis'', Contributions to Mineralogy and Petrology 95(4) (1987) 407–419. [DOI:10.1007/BF00402202]
19. [19] Zhao X.F., Zhou M.F., Li J.W.,Wu F.Y., ''Association of Neoproterozoic A- and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment'', Chemical Geology 257 (2008) 1–15. [DOI:10.1016/j.chemgeo.2008.07.018]
20. [20] Karsli O., Caran Ş., Dokuz A., Çoban H., Chen B., Kandermir R., ''A-type granitoids from the Eastern Pontides, NE Turkey: Records for generation of hybrid A-type rocks in a subduction-related environment'', Tectonophysics 530–531 (2012) 208–224. [DOI:10.1016/j.tecto.2011.12.030]
21. [21] Martin H., Bonin B., Capdevila R., Jahn B.M., Lameyre J., Wang Y., ''The Kuiqi peralkaline granitic complex (SE China): petrology and geochemistry'', Journal of Petrology35 (1994) 983–1015. [DOI:10.1093/petrology/35.4.983]
22. [22] Eby G. N., ''Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications'', Geology 20: (1992) 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 [DOI:10.1130/0091-7613(1992)0202.3.CO;2]
23. [23] Jiang N., Zhang S., Zhou W., ''Origin of a Mesozoic granite with A-type characteristics from the North China craton: highly fractionated from I-type magmas?'', Contributions to Mineralogy and Petrology 158 (2009) 113–130. [DOI:10.1007/s00410-008-0373-2]
24. [24] Creaser R. A., Price R. C., Wormald R. J., ''A-type granites revisited: assessment of a residual-source model'', Geology 19 (1991) 163–166. https://doi.org/10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2 [DOI:10.1130/0091-7613(1991)0192.3.CO;2]
25. [25] Clemens J. D., Holloway J. R., White A.J. R., ''Origin of A-type granites, experimental constraints'', American Mineralogist 71 (1986) 317–324.
26. [26] Pati-o Douce A.E., ''Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids'', Geology 25 (1997) 743–746. https://doi.org/10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2 [DOI:10.1130/0091-7613(1997)0252.3.CO;2]
27. [27] Frost C. D., Frost B. R., ''Reduced rapakivi-type granites: the tholeiite connection'', Geology 25 (1997) 647–650. https://doi.org/10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2 [DOI:10.1130/0091-7613(1997)0252.3.CO;2]
28. [28] Shahbazi H., Siebel W., Pourmoafee M., Ghorbani M., Sepahi A. A., Shang C. K., Vosoughi Abedini M., ''Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in Sanandaj–Sirjan Zone (Iran): new evidence for Jurassicmagmatism'', Journal Asian Earth Sciences 9 (2010) 668–683. [DOI:10.1016/j.jseaes.2010.04.014]
29. [29] Shabanian N. Khalili M. Davoudian A. R., Mohajjel M., ''Petrography and geochemistry of mylonitic granite from Ghaleh–Dezh, NW Azna, Sanandaj–Sirjan zone, Iran'', Neues Jb, Mineral. Abh. 185 (3) (2009) 233–248.
30. [30] Davoudian A. R., Hamedani A., Shabanian N., Mackizadeh M. A., ''Petrological and geochemical constraints on the evolution of the Cheshmeh-Sefid granitoid complex of Golpayegan in the Sanandaj– Sirjan zone, Iran'', Neues Jahrbuch für Mineralogie-Abhandlungen 184 (2007) 117–129. [DOI:10.1127/0077-7757/2007/0085]
31. [31] Maanijou M., Aliani F., Miri M., ''Geochemistry and petrology of granophyric granite veins penetrated in the igneous intrusive complex in south of Qorveh Area, west Iran'', Australian Journal of Basic and Applied Sciences 5 (2011) 926–934.
32. [32] Sepahi A. A., Athari S.F., ''Petrology of major granitic plutons of the northwestern part of Sanandaj–Sirjan metamorphic belt, Zagros Orogen, Iran: with emphasis on A-type granitoids from SE Saqqes area'', Neues Jahrbuch für Mineralogie-Abhandlungen 183 (2006) 93–106. [DOI:10.1127/0077-7757/2006/0063]
33. [33] Dargahi S., Arvin M., Pan Y., Babaei A., ''Petrogenesis of postcollisional A-type granitoids from the Urumieh–Dokhtar magmaticassemblage, Southwestern Kerman, Iran: constraints on the Arabian–Eurasian continental collision'', Lithos 115 (2010) 190–204. [DOI:10.1016/j.lithos.2009.12.002]
34. [34] Aghanabati A., ''Geology of Iran'', Geological survey of Iran, (2004), (In persian).
35. [35] Agard P., Omrani J., Jolivet L., Mouthereau F., ''Convergence history across Zagros(Iran): constraints from collisional and earlier deformation'', International journal of earth sciences 94 (2005) 401-419. [DOI:10.1007/s00531-005-0481-4]
36. [36] Agard P., Omrani J., Jolivet L., Whitchurch H., Vrielynck B., Spakman W., Monie P., Meyer B., Wortel R., ''Zagros orogency: a subduction-dominated process'', Geological Magazine 148 (2011) 692-725. [DOI:10.1017/S001675681100046X]
37. [37] Alavi M., ''Tectonics of the Zagros orogenic belt of Iran: new data and interpretations'', Tectonophysics 229: (1994) 211–238. [DOI:10.1016/0040-1951(94)90030-2]
38. [38] Berberian M., King G. C. P., ''Towards a paleogeography and tectonic evolution of Iran'', Canadian Journal of Earth Sciences 18 (1981) 210-265. [DOI:10.1139/e81-019]
39. [39] Hafkenscheid E., Wortel M.J.R., Spakman W., ''Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions'', Journal of Geophysical Research: Solid Earth 111(2006). [DOI:10.1029/2005JB003791]
40. [40] Mohajjel M. Fergusson C., ''Dextral transpression in Late Cretaceous continental collision Sanandaj–Sirjan zone western Iran'', Journal of Structure Geology 22 (2000) 1125–1139. [DOI:10.1016/S0191-8141(00)00023-7]
41. [41] Mohajjel M., Fergusson C., Sahandi M.R., ''Cretaceous–Tertiary convergence and continental collision, Sanadaj–Sirjan Zone, western Iran'', Journal Asian Earth Sciences 21: (2003) 397–412. [DOI:10.1016/S1367-9120(02)00035-4]
42. [42] Şengör A.M.C., Natal'in B.A., "Paleotectonics of Asia: fragments of a synthesis. In: Yin, A., Harrison, T.M., (Eds.), The Tectonic Evolution of Asia'', Cambridge University Press, Cambridge (1996) 486–640.
43. [43] McQuarrie M., ''Crustal scale geometry of the Zagros fold–thrust belt. Iran'', Journal of Structure Geology 26 (2004) 519–535. [DOI:10.1016/j.jsg.2003.08.009]
44. [44] Alirezaei S., Hassanzadeh J., ''Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, Sanandaj–Sirjan belt: a new record of the Gondwana break-up in Iran'', Lithos 151 (2012) 122–134. [DOI:10.1016/j.lithos.2011.11.015]
45. [45] Moritz R., Ghazban F., Singer B.S., ''Eocene gold ore formation at Muteh. Sanandaj– Sirjan tectonic zone, western Iran: a result of late stage extension and exhumation of metamorphic basement rocks within the Zagros orogen'', Economic Geology 101 (8) (2006) 1497–1524. [DOI:10.2113/gsecongeo.101.8.1497]
46. [46] Hassanzadeh J., Stockli D.F., Horton B.K., Axen G.J., Stockli L.D., Grove M., Schmitt A.K., Walker J.D, "U–Pb zircon geochronology of late Neoproterozoic–Early Cambrian granitoids in Iran: implications for paleogeography, magmatism, and exhumation history of Iranian basement'', Tectonophysics 451 (2008) 71–96. [DOI:10.1016/j.tecto.2007.11.062]
47. [47] Braud J., ''La suture du zagros au niveau de Kermanshah (Kurdistan Iranien): Reconstitution palégéographique, évolution géodynamique, magmatique et structurale: Unpublished Ph.D thesis'', Université de Paris-Sud (1987) 489.
48. [48] Mahmoudi S., Corfu F., Masoudi F., Mehrabi B., Mohajjel M., ''U–Pb dating and emplacement history of granitoid plutons in the northern Sanandaj–Sirjan Zone. Iran'', Journal of Asian Earth Sciences 41 (2011) 238-249. [DOI:10.1016/j.jseaes.2011.03.006]
49. [49] Berberian F., Berberian M., ''Tectono-plutonic episodes in Iran, In: Gupta H.K. Delany F.M. (Eds.), Zagros–Hindu Kush–Himalaya Geodynamic Evolution, American Geophysical ::union::'', Geodynamics Series 3 (1981) 5-32. [DOI:10.1029/GD003p0005]
50. [50] Berberian F., Muir I.D., Pankhurst R.J., Berberian M., ''Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran'', Journal of the Geological Society 139 (1982) 605-614. [DOI:10.1144/gsjgs.139.5.0605]
51. [51] Masoudi F., Yardeley B.W.D., Cliff R.A., ''Rb–Sr geochronology of pegmatites plutonic rocks and a hornfels in the region South-West of Arak, Iran'', Journal of Sciences. Islam. Repub, Iran 13(3) (2002) 249–254.
52. [52] Nezafati N., Herzig P.M., Pernicka E., Momenzadeh M., ''Intrusion-related gold occurrences in the Astaneh–Sarband area, west central Iran. In: Mao J. Bierlein F.P. (ed.). Mineral Deposit Research Meeting: The Global Challenge'', Springer (2005) 445–448. http://dx.doi.org/10.1007/3-540-27946-6_116. [DOI:10.1007/3-540-27946-6_116]
53. [53] Shakerardakani F., Neubauer F., Masoudi F., Mehrabi B., Liu X., Dong Y., Mohajjel M., Monfaredi B., Friedl G., ''Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud–Azna region (NWIran): Laser-ablation ICP–MS zircon ages and geochemistry'', Tectonophysics 647–648 (2015) 146–171. [DOI:10.1016/j.tecto.2015.02.020]
54. [54] Chiu H.Y., Chung S. L., Zarrinkoub M. H., Mohammadi S.S., Khatib M. M., Iizuka Y., ''Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny'', Lithos 162 (2013) 70–87. [DOI:10.1016/j.lithos.2013.01.006]
55. [55] Davoudian A. R., Genser J., Dachs E. Shabanian N., ''Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan Zone, Iran'', Mineralogy and Petrology (2008) 92: 393–413. [DOI:10.1007/s00710-007-0204-6]
56. [56] Vernon R. H., ''A practical guide to rock microstructure'', Cambridge University press (2004) 250-254. [DOI:10.1017/CBO9780511807206]
57. [57] Blenkinsop T., ''Deformation Microstructures and Mechanism in Minerals and Rocks'', Kluwer Academic Publishers (2002)150.
58. [58] Jensen L. N., Starkey J., ''Plagioclase microfabrics in a ductile shear zone from the Jotun nappe. Italy'', Journal of Structure Geology, 7 (1985) 527-539. [DOI:10.1016/0191-8141(85)90025-2]
59. [59] Bea F., ''Residence of REE. Y. Th and U in granites and crustal protoliths: implications for the geochemistry of crustal melts'', Journal of Petrology. 37 (1996) 521-552. [DOI:10.1093/petrology/37.3.521]
60. [60] Wilson M., ''Igneous petrology'', Chapman & Hall, (1994).
61. [61] Whitney D. L., Evans B. W., ''Abbreviations for names of rock-forming minerals'', American Mineralogist 95 (2010) 185–187. [DOI:10.2138/am.2010.3371]
62. [62] Middlemost E.A.K., ''Magmas and magmatic rocks'', Longman (1986).
63. [63] Frost B. R., Barnes G. G., Collins W. J., Arculus R. J., Ellis D. J., Frost C. D., ''A geological classification for granitic rocks'', Journal of Petrology 42 (2001) 2033-2048. [DOI:10.1093/petrology/42.11.2033]
64. [64] Irvine T.N., Baragar W.R.A., ''A guide to the chemical classification of common volcanic rocks'', Canadian Journal of Earth Science 8 (1971) 523-548. [DOI:10.1139/e71-055]
65. [65] Kaur P., Chaudhri N., Hofmann A. W., Raczek I., Okrusch M., Skora S., Baumgartner L.P., ''Two-stage. extreme albitisation of A-type granites from Rajasthan, NW India'', Journal of Petrology 53 (2012) 919-948. [DOI:10.1093/petrology/egs003]
66. [66] Boynton W.V., ''Cosmochemistry of the rare earth elements: Meteorite studies Rare Earth Element Geochemistry. Developments in Geochemistry 2 (Henderson. R. Ed.), Elsevier'', Amsterdam (1984) 89-92.
67. [67] Tepper J. H., Nelson B. K., Bergantz G. W., Irving A. J., ''Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity'', Contributions to Mineralogy and Petrology 113 (1993) 333-351. [DOI:10.1007/BF00286926]
68. [68] Sun S. S., McDonough W. F., ''Chemical and isotopic systematic of ocean basalts: implication for mantle composition and processes, In: Saunders, A. D., Norry, M. J., (Eds.). Magmatism in the Ocean Basins'', Geological Society [London] Special Publication 42 (1989) 313–345.
69. [69] Chen J.F., Jahn B.M., ''Crustal evolution of southeastern China: Nd and Sr isotopic evidence'', Tectonophysics 284 (1998) 101–133. [DOI:10.1016/S0040-1951(97)00186-8]
70. [70] Wilson M., ''Igneous petrogenesis: a global tectonic approach'', Unwin Hyman, Winchester, Massachosetts, USA, 57(1990).
71. [71] Gao S., ''Chemical composition of the continental crust: a perspective from China'', Geochemical News 143 (2010) 6.
72. [72] Whalen J.B., Currie K.L., Chappell B.W., ''A-type granites: geochemical characteristics, discrimination and petrogenesis'', Contributions to Mineralogy and Petrology 95 (1987) 407–419. [DOI:10.1007/BF00402202]
73. [73] Chappell B. W., White A. J. R., ''I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. In: Keqin X. & Guangchi T. eds. Geology of Granites and Their Metallogenic Relations', Science Press, Beijing (1984) 87–101.
74. [74] Fiannacca P., Brotzu P., Cirrincione R., Mazzoleni P., Pezzino A., ''Alkali metasomatism as a process for trondhjemite genesis: evidence from Aspromonte Unit, north-eastern Peloritani, Sicily'', Mineralogy and Petrology 84 (2005) 19-45. [DOI:10.1007/s00710-005-0073-9]
75. [75] Rogers G., Hawkesworth C. J., ''A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge'', Earth and Planetary Science Letters 91 (1989) 271–285. [DOI:10.1016/0012-821X(89)90003-4]
76. [76] Wu F., Sun D., Huimin L., Jahn B., Wilds S., ''A-type granites in northeastern China: age and geochemical constraints on their petrogenesis'', Chemical Geology 187 (2002) 143–173 [DOI:10.1016/S0009-2541(02)00018-9]
77. [77] Pearce J. A., Harris N. B.W., Tindle A.G., ''Trace element discrimination diagrams for the tectonic interpretation of granitic rocks'', Journal of Petrology 25 (1984) 956–983. [DOI:10.1093/petrology/25.4.956]
78. [78] Eby G.N., "Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications", Geology 20: 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 [DOI:10.1130/0091-7613(1992)0202.3.CO;2]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb