شیمی کانی و سنگ‌زایی متابلیتهای مجموعه دگرگونی – آذرین شرکوه

(جنوبشرق شاهدز)

سفره شکاری ۱. محمود صادقیان، حیب الله قاسمی، چوئ مینگو

1- دانشکده علوم زیستی، دانشگاه صنعتی شرود
2- مؤسسه رزمین‌شناسی و زیست‌پژوهی انجمن علمی چین و دانشگاه تورنتو (نروژ غرب) چین

چکیده: مجموعه دگرگونی - آذرین شرکوه به سی پروتوژنتیک‌هایان (۴۸۲ تا ۵۷۹ میلیون سال پیش) واقع در جنوبشرق شاهدز، طیف متنوعی از جنس گروه ترکیبی متلاژت، متالیتهایی، متالریک، متاساسی و متازیک را شامل می‌شود. متابلیتهای این مجموعه طیف سنگی متنوعی از فیلیت تا جنگل و میکانیکی را شامل می‌شود. شدت دگرگونی در بیشترین درجه، تا مرز ذوب‌پذیری و تشکیل متابلیته‌های گرانیتی پیش‌رفته است. نتایج آن - فشارسنجی این متابلیتهای دمای ۶۴۱ درجه سانتی‌گراد و فشار ۴ تا ۱۳ کیلوبار با شرایط دما - فشار رسیده‌های نسبی تا آمفیتولیت همکومیتی. این می‌تواند به تاواه‌های رسوبی اولیه (سنگ‌های مادر مجموعه دگرگونی شرکوه) طی یک زمین کشن - کافی درون قاره‌ای و در حوضه‌های دریایی - اقیانوس تشکیل شده‌اند. این جوامع‌ها، طی تعدادی از نظرات، سنگ‌های آن دگرگونی‌های سپس، به پوسته‌های قاره‌ای سه‌زیستی مدور خود را به دنبال داشتند.

واژه‌های کلیدی: دگرگونی، مفاء، فشارسنجی، شاهدز، دودمی آدوبیت

مقدمه

در جنوب و جنوبشرق شاهدز، جنین مجموعه دگرگونی - آذرین به سی پروتوژنتیک‌های بپایی رخ داده، از جمله شرکوه، دیپورت، بندزاگاره، مجارد، دوچه، احمدآباد، رضای‌اباد و میامی (شکل ۱). در سالهای اخیر، به‌رهگیری‌های مختلف نظری [۱-۱۱] این سنگ‌های به عنوان سنگ‌هایی از گنج‌نامه U-Pb انجام شده بزرگ‌ترین استخراج شده از گروه‌های سنگی مختلف این سنگ‌های، نشانگر درستی سن حداکثر ۵۴۰ میلیون سال برای شرایط اوج دگرگونی و گرایش‌های مختلف‌گونه‌های سنگ‌های تامبیده است [۱-۱۱] بر اساس بررسی‌های انجام شده در کشورهای همسایه از قبیل عربستان سعودی - [۱۲-۱۳]. افغانستان [۱۴].

s.shekari@shahroodut.ac.ir

*توییت مسئول، تلفن: ۰۲۱۰۶۹۳۷۶۹۲، نامبر: ۰۲۱۷۵۵۰۰۰۷۷، پست الکترونیکی:
نتیجه‌گیری معرفی دگرگونی‌های سنگ‌شناختی در مجموعه دریچه شترکوه یکی از همین سرشماری‌های پی سنجی ایران است. مقایسه شواهد صحرایی در باربری‌های اولیه و مستندات منتشر شده پیشین نشان داد که همه بسیاری از دگرگونی‌های سنگ‌شناختی در مجموعه آذرین دگرگونی شترکوه به خوبی معرفی و تفسیر می‌شود.

**شکل ۱** مکانیت مجموعه دریچه شترکوه - آذرین شترکوه بر نشان دهنده ایران، ب) مکانیت این مجموعه در بین سرشماری‌های گوناگون‌های جنوب و جنوب شرق شاهدیک، ب) نشانه‌های مکانیت این مجموعه که براساس بررسی‌های صحرایی و تصاویر ماهواره‌ای تهیه شده است. گفتگوی این مکان مربوط به بازه شکافت و درجه یک باید درجه بالا و درجه پایین تدریجی است.
روش انجام یکپوش‌سازی
برسری پژوهش‌های پیشین در مورد منطقه شرکوه، برابر به
برداشت‌های صحرایی تهیه 0.45 مقطع نازک و 77 مقطع نازک
- سیلیکونی از گزارش‌های منطقه انجام یکپوش‌سازی
جوهه شیمیایی نقع‌های کانی‌ها به روش پریدرارش الکترونی
(EPMA) و تجزیه شیمیایی سنگ کل تعداد 18 نمونه
ICP-MS در آزمایشگاه
مرکزی تحول سن کره مسولیتی زمین‌شناسی و زعفرانیک
آکادمی علوم چین. پنجم کشور چین انجام شد. تجزیه کانی‌ها
توسط دستگاه برزیلیانه مدل 1000 XFA-A10 میلی
جریان ریزدرارش (A) 0.1–0.1 درایه C، رطوبت
صوت‌گرفت و از نمونه استاندارد 2002-615
کشور چین انجام شد.
زمین‌شناسی منطقه
مجمعه دگرگونی شرکوه در جنوب شرق شاهرود و در کرانه
شمالی بتهن ساختری ایران مرکزی واقع است. این منطقه در
گزارش‌های خریدایی 0.25 درجه در لاتیتود و 51 درجه در
شمالی و 103 درجه شرقی در گستره نقشه‌های
زمین‌شناسی 1:500000 10000 و 1:10000
روزه و با به
عبارت صلح بر روی قرار داد. با وجود پژوهش‌های از شناسنده
پیشینان در منطقه [1، 2، 3، 4] بله دریاچه‌های
فرآیند در سرحد و رنگ‌های آب و هوای بسیار ناسازه و
پیچیده دگرگونی سنجش‌های قطبی و زمین‌شناسی
هنوز هم این موضوع فراوانی‌های در یافته‌ها
زمین‌شناسی شناخت
مجمعه شرکوه وجود دارد. همچنین با توجه به انجام بررسی
های دقیق و جامع در سرتاسر یک‌پوش‌های قطبی ایران در منطقه
مجاور [4، 5، 6، 7، 8، 9، 10، 11]. لازم به
کرد این دگرگونی‌های
در برخی مطالعات صحرایی و آزمایشگاهی گسترده در این
مجمعه نیز انجام گردید.
سنگ‌های دگرگونی با طیف ترکیبی متغیر و به صورت
پیشنهاد سراسرباندی مجمعه دگرگونی شرکوه رخند. تنویع
ترکیبی توافقنده و آنری اولینه. به بروز یک طیف
ترکیبی متغیر مورد نظر است. سنجش‌های طبیعی از فیلیت،
میکاسیست، گارنت شیست، گارنت میکاسیست‌ها گیب،
گارنت زئیت و میکاسیست‌ها شامل می‌شوند. دگرگونی‌های
سنجش‌های میکاسیست‌ها خود را در پالایش‌های شرکوه
تدریجی در مناطق‌های به وضوح قابل مشاهده است. گرنت‌ها
و گیرندرنگ‌ها غالبیتی در ایالات هر وکتورلاست‌ها گزارش و
پاسیون
فلسیمیار (ارنتز) (شکل 2) بود. در هر دو ناحیه میکاسیست‌ها و شاهد باز
میکاسیست‌ها دیده می‌شود. در مناطق‌های میکاسیست‌ها به
شکل است. گرددرتیپ، تونذ و پلاژیردرارش منجر شده است. و
پدیده جدایی درگوگانی و ذوب بخش درجا، در
شکل توانایی میکاسیست‌ها به مناطق‌های
عمده‌ای داشته‌اند. شاهد مورف‌های ناشن می‌دهد که فراوان‌های آذرین
حاصل از فرآیند دیفیژن، نسبت به همه مجموعه شرکوه
حمض بسیار کمی دارند و سپس دستخوش دگرگوگانی و
شیمیایی شده‌اند در بعضی نقاط، گنی‌سکی به طور
توبن سطح‌ها و گیرندرنگ‌ها قطع شده‌اند.
سنگ‌نگاری میکاسیست‌ها
میکاسیست‌ها یکی از مواد سنگینی از سنگ‌های درگوگانی شالر است. سیستم
فیلیت، میکاسیست، گارنت، میکاسیست، گارنت، گیرندرنگ را
در می‌گیرند. فیلیت‌ها، میکاسیست‌ها و گارنت‌های
بافت پلی سیستم‌ها پوتوئوهاست و پولی کیولپلاستی نشان
می‌دهند (شکل 3). حضور فراوان مسکوویت و بیوتیت در
این سنگ‌ها، پروگرایک (تسینرابیزر) بارزی را ایجاد
کرده‌است. بافت‌های
ناتی از عملکرد پهن‌های زمینی سری
میکاسیست‌ها در میکاسیست‌ها میکاسیست‌ها و
میکاسیست‌ها به طور
شکل می‌باشد. (Mica fish) (شکل 2)، توجه
یافته‌ای برنده و پرای تعبیه جهت ترسیم قابل استفاده است. بافت‌های
که از جمله شاهد بارز درگوگانی در
پهن‌های پر زمین ساختا، سطح از می‌دهد
بافت گلوله برگی)، برای پرای میکاسیست‌ها و نتایج دما-
فشارسنجی که در ادامه به آن‌ها اشاره خواهد شد، این سنگ‌ها
در شرایط مدار - فشار حاکم بر رخ‌های شیست و
آمپولیت، درگوگان شده‌اند.
پروفیبولاستاس ها از طریق سطح برش S، C به وضوح در این تصویر دیده می‌شوند.

![تصاویر]

شکل ۳: تصاویر میکروسکوپی نشان‌دهنده وزیگ‌های برای سنگ‌های متالیتی (الف) گارنت میکاپیستس با فانت پروفیبولاستی (بی‌تی‌کیلوبلاستی)، XPL.

با پیشرفت در گدرگونی ناحیه‌ای، میکاپیستسی با گنیسی و گارنیت به هم اندازه گرفته‌اند و در انتهای توده‌گری، رنگ‌گونی آنها به گنیسیت تبدیل شده است (شکل ۳ب). پهلوه مقدار بیشتر از درون‌کردن قادر به قاد، فراوانی بیوتین و افراش انداره دانه‌های میکاپیستسی است. با کاهش فراوانی بیوتین و افراش، پهلوه نیز موجب شده است تا رنگ گنیسی از خاکستری تیره به سفید تا کرم تغییر کند. گنیسی، بزرگ و قابل توجهی دیگر به شکل‌های متالیتی مجموعه شرک‌دار با پیش قدرت دارد. در واقعیت، مینه‌ی دانه که در پسران از ماروا، دما، فراش جاری بر همیشه میکاپیستس ریشه‌ای است. نوده‌های سنگی لکه‌های حاصل از ذوب گنیسی، از نواحی نوارهای گرانتی، در مفهوم سنتیتی خاص دستی‌بندی می‌شود که در حقیقت می‌توان آنها را میکاپیستس نامید. همچنین در درجه‌ها کم گرانتی و افراش به توده‌ها و از سطح برش S، C و S به وضوح در این تصویر دیده می‌شوند.
شیمی کانی و سنگ‌نوازی متالیت‌های مجموعه دگرگونی - آدینشاه شرکو...  

شکل ۴ نمودارهای تعیین ترکیب پروتئین‌ها و گازه‌ها. 

نمودار سه‌بعدی مجموعه اعضای نهایی 

به عنوان نمودار جهت بررسی اثر فاکتورهای مختلف بر ترکیب پروتئین‌ها و گازه‌ها استفاده شده‌است. 

شکل ۵ نمودارهای طبقه‌بندی فلد‌پاره‌های 

فلد‌پاره‌های فلدپاره‌های منطقه به نظر می‌رسد در حال تغییر در موقعیت موجود X_{MgCl} < X_{MgBio}. 

که برای تشکیل گازه‌ها در سطح‌های مردم مورد بررسی در مجموعه کلیاپایه واکنش دارد، به صورت X_{MgCl}.

در این روش، با

\[ A = \frac{(\text{Al}^{3+})/(-3\text{Mg}) + \text{Al}^{3+}}{\text{Fe}^{2+} + \text{Mg} + \text{Al}^{3+}} \]

\[ A = \frac{\text{Fe}^{2+} + \text{Mg} + \text{Al}^{3+}}{\text{Fe}^{2+} + \text{Mg} + \text{Al}^{3+}} \]

\[ A = \frac{\text{Fe}^{2+} + \text{Mg} + \text{Al}^{3+}}{\text{Fe}^{2+} + \text{Mg} + \text{Al}^{3+}} \]
جدول 1 نتایج تجزیه ریزیپارش (EPMA) برخی از گزارنگین‌ها (بعضی از داده‌ها به صورت میانگین آراه شده‌اند).

<table>
<thead>
<tr>
<th>Spots</th>
<th>کرات</th>
<th>حاصله عنوان حاصله عنوان</th>
<th>سایبان</th>
<th>سایبان</th>
<th>پلاژیوکوارتز</th>
<th>پلاژیوکوارتز</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SM-33-1</td>
<td>SM-53-2</td>
<td>SM-27-1</td>
<td>SM-27</td>
<td>SM-33-1</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.27</td>
<td>0.28</td>
<td>0.26</td>
<td>0.27</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>TiO₂</td>
<td>19.6</td>
<td>19.0</td>
<td>19.0</td>
<td>19.0</td>
<td>19.0</td>
<td>19.0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>71.2</td>
<td>71.0</td>
<td>71.0</td>
<td>71.0</td>
<td>71.0</td>
<td>71.0</td>
</tr>
<tr>
<td>CrO</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>FeO</td>
<td>3.9</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>MnO</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>MgO</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>CaO</td>
<td>71.2</td>
<td>71.0</td>
<td>71.0</td>
<td>71.0</td>
<td>71.0</td>
<td>71.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Totals</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
</tr>
<tr>
<td>Oxygen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2 خلاصه نتایج دما - فشار سنگی به روش‌های مختلف

<table>
<thead>
<tr>
<th>کلیشه‌ها</th>
<th>مطالعه‌های</th>
<th>روش‌های سنگی‌ها دما - فشار سنگی با دما - فشار سنگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (kbar)</td>
<td>T (°C)</td>
<td>P (kbar)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13.2 ± 0.4</td>
<td>760 ± 660</td>
<td>498 ± 498</td>
</tr>
<tr>
<td>15.0</td>
<td>750 ± 551</td>
<td>498 ± 498</td>
</tr>
<tr>
<td>15.0</td>
<td>670 ± 670</td>
<td>498 ± 498</td>
</tr>
<tr>
<td>16.0</td>
<td>550 ± 560</td>
<td>498 ± 498</td>
</tr>
<tr>
<td>16.0</td>
<td>560 ± 570</td>
<td>498 ± 498</td>
</tr>
<tr>
<td>16.0</td>
<td>570 ± 580</td>
<td>498 ± 498</td>
</tr>
<tr>
<td>16.0</td>
<td>580 ± 590</td>
<td>498 ± 498</td>
</tr>
</tbody>
</table>
جدول ۳ نتایج دماسنجی نبادل کانی‌دانی زوج بیونیت- گرانت در سلگی‌های منطقه شترکو. 

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg(Mg+Fe)Grt</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Mg(Mg+Fe)Bt</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>KD</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Alm</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Sp</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pp</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Grs</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>T(GBPQ, Model 1)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>T(GBPQ, Model 2)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

جدول ۴ نتایج دماسنجی به روش [۳۵] برای نمونه‌های متابیشی.

<table>
<thead>
<tr>
<th>Sample</th>
<th>کپسی</th>
<th>میکاکسیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe³⁺</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Xbr</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Xpp</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Xgros</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Xpp</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Xan</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Xan</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LKd(Mg)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LKd(Fe)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Peal(Mg)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>T(GBPQ, ave)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>P(GBPQ, Model 1)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>P(GBPQ, Model 2)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

کپسی: کسر مولی اسپتارین در گرانت
میکاکسیت: کسر مولی گروسولار در گرانت
Xbr: کسر مولی باینینت در گرانت
Xpp: کسر مولی پیپس در گرانت
Xgros: کسر مولی گروسولار در گرانت
Xpp: کسر مولی پیپس در گرانت
Xan: کسر مولی آنیت در گرانت
LKd(Mg): کسر مولی لبک در گرانت
LKd(Fe): کسر مولی لبک در گرانت
Peal(Mg): کسر مولی پیپس در گرانت
GBPQ: دمای محاسبه شده بر اساس مقدار T(GBPQ, ave)
GBPQ: دمای محاسبه شده بر اساس مقدار P(GBPQ, Model 1)
GBPQ: دمای محاسبه شده بر اساس مقدار P(GBPQ, Model 2)
جدول 5 نتایج دما- فشارسنجی به روش امپیبول- پلاژوکلاژ و برای هوئیندهای نمونه گینسی هوئیندلد.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>SM-33-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>39.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.7</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.7</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>24.3</td>
</tr>
<tr>
<td>MgO</td>
<td>4.5</td>
</tr>
<tr>
<td>MnO</td>
<td>0.3</td>
</tr>
<tr>
<td>CaO</td>
<td>11.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.3</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.1</td>
</tr>
<tr>
<td>Sum</td>
<td>90.2</td>
</tr>
<tr>
<td>X₁₅</td>
<td>0.9</td>
</tr>
<tr>
<td>X₈</td>
<td>0.1</td>
</tr>
<tr>
<td>T(o)Hβ₂</td>
<td>62.8</td>
</tr>
<tr>
<td>P(Kβ) Hβ₂</td>
<td>9.7</td>
</tr>
<tr>
<td>T(o)Cuβ₁</td>
<td>42.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>SM-53-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>39.8</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>11.1</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>24.2</td>
</tr>
<tr>
<td>MgO</td>
<td>5.1</td>
</tr>
<tr>
<td>MnO</td>
<td>2.0</td>
</tr>
<tr>
<td>CaO</td>
<td>11.3</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.3</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.1</td>
</tr>
<tr>
<td>Sum</td>
<td>90.8</td>
</tr>
<tr>
<td>X₁₅</td>
<td>0.8</td>
</tr>
<tr>
<td>X₈</td>
<td>0.2</td>
</tr>
<tr>
<td>T(o)Hβ₂</td>
<td>62.5</td>
</tr>
<tr>
<td>P(Kβ) Hβ₂</td>
<td>9.7</td>
</tr>
<tr>
<td>T(o)Cuβ₁</td>
<td>42.9</td>
</tr>
</tbody>
</table>

جدول 6 نتایج فشارسنجی به روش امپیبول در نمونه‌های گینسی هوئیندلد.

<table>
<thead>
<tr>
<th>Amphibole group</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ca+Na) (B)</td>
<td>0.01</td>
</tr>
<tr>
<td>Na (B)</td>
<td>0.01</td>
</tr>
<tr>
<td>(Na+K) (A)</td>
<td>0.01</td>
</tr>
<tr>
<td>Mg(Mg+Fe+2)</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe³⁺(Fe³⁺+Al⁺⁺)</td>
<td>0.01</td>
</tr>
<tr>
<td>Amphibole names</td>
<td>Ferrotschermakite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[37]</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>[38]</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>[39]</td>
<td>10.2</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>[40]</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
</tr>
</tbody>
</table>
شکل 5 نمودارهای ترکیبی نفوذپذیری گیسی مجموعه شطرنج بر نمودار سه‌بعدی طبقه‌بندی فلزپردازی‌ها [22]. موقعیت ترکیبی آلی از تکل‌پل کلسیمی و گیسی.

شکل 6 موقعیت ترکیبی فلزپردازی‌های نمونه‌های گیسی مجموعه شترکوه بر نمودار سه‌بعدی طبقه‌بندی فلزپردازی‌ها [22]. موقعیت ترکیبی الماس.

بویوتیت‌های موجود در گارنتر میکااسیست‌ها دمایی بین 460°C تا 560°C و بویوتیت‌های موجود در گیس‌ها دمایی بین 480°C تا 500°C در جریان سانگ‌زاده را نشان می‌دهد (شکل 7). که با دمایی پایه دست‌آمده از دمای سنج زوی بویوتیت- گارنر برای گیس‌ها هم‌خوانی دارد. بر اساس آزمایش دما - فشار سنجه‌های هورنی‌پلکاس بالا - پلاژدیل - کوارتز [22] دمایی بین 618°C تا 673°C و فشار 9 تا 10 کیلوبار برای گیس‌های هورنی‌پلکاس ترسره‌دار مورد بررسی به دست آمده است (جدول 2). امکان‌های موجود در گیس‌های بررسی شده از نوی فرچه‌پرده هستند و در فشار حدود 9 کیلوبار تشکیل شده‌اند (شکل 8). بنابراین، براساس مقادیر

دما - فشار سنجه‌های براساس روش دما - فشار سنجه و تیتر گارنر - بویوتیت - پلاژدیل - کوارتز [22] دمایی بین 618°C تا 673°C و فشار 9 تا 10 کیلوبار برای گیس‌های هورنی‌پلکاس ترسره‌دار مورد بررسی به دست آمده است (جدول 2). امکان‌های موجود در گیس‌های بررسی شده از نوی فرچه‌پرده هستند و در فشار حدود 9 کیلوبار تشکیل شده‌اند (شکل 8). بنابراین، براساس مقادیر T1 موجود در بویوتیت [22] (جدول 5).
مورد توجه قاره گرتونه است) با شرایط دما و فشار به دست آمده برای محاسباتی هزاران آنها در مجموعه شترکو (داماه ۲۱۱-۹۰۲ درجه سانتی‌گراد و فشار ۱۱ کیلوبار). همخوان خوبی دارد [۴۷-۴۸].

این گسترده‌ها، با سیستم دما - فشار دگرگونی ناخواصی بیشترند دما - فشار متوسط نرمال و بطور (در گستره دما - فشار رخساره‌های میکاشیت‌های آمپبولین در همه‌پذیری مخوایی را نشان می‌دهند. شواهد کانی شناسی و سنجشگری نیز این موضوع را تأیید می‌کند. همان گونه که در شکل ۹ دیده می‌شود، خط سیر رخساره دگرگونی، گستره دما و فشار پایدار (۲۰ کیلومتر در درجه سانتی‌گراد) گستره دما و فشار پایداری کیانی دارد (حدود متغیری است). مشاهده شوتی در گستره دما - فشار رخساره‌های میکاشیت‌های آمپبولین داده شده است. در شکل ۸ مجموعه دگرگونی شامل خاک بودن شرایط دما - فشار تقریباً مشابه تا تیپ شکل ۹ که در آنها سایر ملاحظات زمین‌شناسی نیز

سازمان‌های دگرگونی پی سگی مجاز مجموعه دگرگونی شرکت‌ها است. مسئولیت مدیران، مسوولیت مدیران و فناوری و کارآگاهان مسئولیت مدیران هستند. 

به‌طور کلی، مسئولیت مدیران و فناوری و کارآگاهان 

که دانسته مجموعه دگرگونی یک مبرهه به‌طور تطبیقی است. 

منبع: سازمان‌های دگرگونی پی سگی مجاز مجموعه دگرگونی، 1392.
مورد بررسی حضور دیاته رضوانی مدل دنیای انسان از آن، نیازمند بررسی‌های صحرائی و منسجم بیشتر و دقیق تر است.

شناختی سنج کننده‌ها در دو سطح بافتی - سلولی و اسکلتی اشخاصی، مانند بافت‌های نيبگینه و یا پوستی انجام می‌گیرد.

در پایان مقاله، هر دو مدل می‌تواند نتایج دقیق‌تری برای پیش‌بینی حضور دیاته در بدن انسان در نظر گرفته شود.

**متن انگلیسی**

The article presents the results of a study on the presence of diet-related diseases in human beings. The study was conducted in two layers: cellular and skeletal. The findings suggest that these models can provide more accurate predictions for the presence of such diseases in the human body.

**انگلیسی سنتی**

The article presents the results of a study on the presence of diet-related diseases in human beings. The study was conducted in two layers: cellular and skeletal. The findings suggest that these models can provide more accurate predictions for the presence of such diseases in the human body.
شیمی کانی و سنتز وابسته‌های مجموعه‌های مغزال دگرگونی – آذرین شترکوه... 191

شناخته‌های دگرگونی ناحیه‌های پارسیان، ریشه گرفته است.

با توجه به همبستگی‌های پیشین و نیز به نسبت نسبت‌های این ساختارهای دگرگونی و شترکوه خیالی‌هایشان تأثیرگذاری ممکن است. در این مدل، همبستگی‌های پیشین، معمولاً در فاصله چهار دهه جایزه‌ای (OIB) اتفاقاتی در زمین شیمیایی و شرایط دما-فشار حاکم فرآیندهای بین محیط منبع گونه‌ای نشان می‌دهد. همین‌طور، سیستم شترکوه این مدل بررسی شده است. همچنین، در این مدل، شترکوه پیشنهادی و همچنین می‌تواند از مدل‌های آلوده این ساختارشان تأثیرگذاری ممکن است.

برای شترکوه، مجموعه‌های دگرگونی آذرین شترکوه در ساختارهای منطقه‌ای متغیر است. با توجه به همبستگی‌های پیشین، معمولاً در فاصله چهار دهه جایزه‌ای (OIB) اتفاقاتی در زمین شیمیایی و شرایط دما-فشار حاکم فرآیندهای بین محیط منبع گونه‌ای نشان می‌دهد. همین‌طور، سیستم شترکوه این مدل بررسی شده است. همچنین، در این مدل، شترکوه پیشنهادی و همچنین می‌تواند از مدل‌های آلوده این ساختارشان تأثیرگذاری ممکن است.

شترکوه، سیستم شترکوه در ساختارهای منطقه‌ای متغیر است. با توجه به همبستگی‌های پیشین، معمولاً در فاصله چهار دهه جایزه‌ای (OIB) اتفاقاتی در زمین شیمیایی و شرایط دما-فشار حاکم فرآیندهای بین محیط منبع گونه‌ای نشان می‌دهد. همین‌طور، سیستم شترکوه این مدل بررسی شده است. همچنین، در این مدل، شترکوه پیشنهادی و همچنین می‌تواند از مدل‌های آلوده این ساختارشان تأثیرگذاری ممکن است.

شترکوه، ناحیه‌های پارسیان، ریشه گرفته است.

با توجه به همبستگی‌های پیشین و نیز به نسبت نسبت‌های این ساختارهای دگرگونی و شترکوه خیالی‌هایشان تأثیرگذاری ممکن است. در این مدل، همبستگی‌های پیشین، معمولاً در فاصله چهار دهه جایزه‌ای (OIB) اتفاقاتی در زمین شیمیایی و شرایط دما-فشار حاکم فرآیندهای بین محیط منبع گونه‌ای نشان می‌دهد. همین‌طور، سیستم شترکوه این مدل بررسی شده است. همچنین، در این مدل، شترکوه پیشنهادی و همچنین می‌تواند از مدل‌های آلوده این ساختارشان تأثیرگذاری ممکن است.


(Bafgh- Yazd)”, Msc thesis, Shahrood University of Technology, Shahrood, Iran (2008), (in Persian).


[51] Razavi S.M., "Magmatism and metamorphism Saghad area (Cenrtal Iran)", Islamic Azad University, 300p, (1993)


[55] Balaghi Einalou Z., "Petrology and geochemistry of South Bahabad igneous rocks