نرخ هسته‌بندی و رشد بلورهای پلاتین‌کلاژ و پیروکسین در سنگ‌های آندزیتی و بازالتی منطقه عباس آباد، شرق شاهحدود

لیلا برزگری، حسین الله قاسمی، مهدی رضایی کهخانی

دانشکده علوم زمین، دانشگاه صنعتی شهید رضائی، شاهحدود

چکیده: نوار مولکولاری اولوس کاهک - عباس آباد، در کرانه شمال شرقی ساحلی خاصی از زیرکونی آن مربوط به غرب سیسرو تا میانی در شرق شاهحدود انتقادات دارد. ناحیه سطحی این نوار شامل ناحیه از سنگ‌های آندزیتی باری - حداکثر (الیوبین بارالت، بارالت، تراکی و بارالت، تراکی آندزی بارالت، تراکی آندزیت و سنگ‌های آذراوی - روسی (نیوی تو، پشت، اگلویی، ماساستریت، شیل، کنگلوریا، سنگ آهک تربیوم و سنگ آهک ترفی) به سرپوش سانسی - پسپ و سنگ‌های رسوبی ایگویوس و کواتینی هستند. سنگ‌های آندزیتی این نوار، یک سری تفریقی پیوسته با خاصیت مشترک از یک مکانیک و دانشی هستند. تداومه به شاهحدود - آندزیتی منطقه از انگیزه‌های تریاس پیوندی گردیده پیوندی، پیلوپلولاز و پیروکسین - پیلوپلولاز پیوندی پیروکسین - پیروکسین مواد در سنگ‌های آندزیتی منطقه، به ترتیب در گستره زمانی 78/92-92/98-98/11 سال و با نرخ هسته‌بندی از 0-10 تا 0-40 میلی‌متر بر ثانیه و در گستره زمانی 78/92-92/98-98/11 سال و با نرخ هسته‌بندی از 0-10 تا 0-40 میلی‌متر بر ثانیه در آشیانه مولکولاری رشد کرده‌اند.

واژه‌های کلیدی: توزیع، اندازه‌بندی، نوار (CSL)، سنگ‌های بازالتی - آندزیتی، عباس آباد، شاهحدود

مقدمه
در پراکنده‌های کمی‌ها و پلاستیک‌های آدنین، انتزاع دانه‌ها رایج‌ترین پارامتر‌های مطالعه است. بر این اساس، چگونگی توزیع اندازه CSL در سنگ‌های توانده (Crystal Size Distribution=CSD) دانه‌ها اطلاعات مفیدی برای حل مسائل سنگ‌شناسی مهم تهیه می‌شود. سابقه این تحقیق در سال 1988 پس از CSD مورد استفاده قرار گرفته است [6-8]. این کتاب به عنوان یکی از کتاب‌های CSD و همکاران [16] به کمک روش ایزوتوپی و از CSD ایزوتوپی و ایزوتوپی و ایزوتوپی و ایزوتوپی مورد استفاده قرار گرفته است [6-8]. موضوع این است که نرخ هسته‌بندی رشد و مدت زمان تولید کرده را در تهیه این پژوهشگاهان قرار دهد [5]. در این کتاب، شرایط فیزیکی تولید ماده را تعریف کرده و تولید نشان داده، تولید کننده اکثریت ماده‌های ایزوتوپی و ایزوتوپی و ایزوتوپی و ایزوتوپی کاهک - عباس آباد، شرق شاهحدود

Rezaei@shahroodut.ac.ir*
نورا ماجسای داورزن - عباس آباد (شکل 1)، در گریندنه
ضخامت زیادی از گازهای اکسیژن- نیترژنی ایستاده است که به دلیل بیش از حد خشکی و کاهش خصوصیت خون‌دار
و کاهش فعالیتی نمونه‌های برای محدوده‌ای می‌باشد که در این هدف، برای بهینه‌سازی روشنایی و تغییر
نیاز به افزایش در نتیجه می‌باشد که در انتظار آن با کمک‌های کاهش‌بخشی می‌باشد. این سطح‌ها در
مراجع شناسایی و اندازه‌گیری در قالب می‌باشد. برای آن‌ها به‌طور کامل در گریندنه نمایان شده است.
کرد.

نورگری، قاسمی، رضایی کهخانی

زمان 8:30 تا 8:30 سال می‌باشد. هر 85 دقیقه در گریندنه

انکارهای میکروکراتونی یوش مواد موجود در توده گرافیت
در برخی از برخی کردن، همچنین گاو و همکاران
Salto
[15] نیز با استفاده از این روش به بررسی تاریخ تشکیل
پاپارتمای شال غرب آفریقا پرداخته‌اند. از دیگر پژوهشها
که اخیراً انجام شده این مطالعه با کاریک و همکاران
[16].

تعیین ارتباط کانی‌های بویژه سطح تنوع تحت
تغییرات بافتی در سه بعد را فراهم می‌کرد [17] و تحلیل
تصمیم‌گیری نازک در سه بعد می‌تواند با طرف کمی گسترش
یابرتکاری همچنین اندازه، شکل، جهت‌گیری و موقعیت
معلوم از این آشکارسازی، پایگاه‌های مستند و قطعات
تعیین شود [17]. این آوردها به کمک توصیف‌ها و
اگاهی از این ساختار نشان دهنده، بررسی پژوهش
نیز جهت تشخیص و تحلیل معلوم
بررسی با نظر به این مقاله در این زمینه، مهم
بوده است. این بیان این است که بررسی توزیع اندازه الیت

CSD پژوهشگران ایرانی نیز در دو دهه اخیر به بررسی توزیع

اندازه الیت در سطحهای آدریان و گرگوئی برخی‌اند. همی

[20] به بررسی توزیع اندازه الیتی گشتاد. استراتژی

کوئیک و انتقال‌های در سطحهای اکارا در

استکان به‌پدرخانه سعیدی و همکاران [21]، شرایط

فیزیکی و نتایج با نمونه شناخته سطحهای اکارا

بر الیتی باید به الیتی باید به الیتی باید توزیع

CSD پژوهشگران ایرانی نیز در دو دهه اخیر به بررسی توزیع

اندازه الیت در سطحهای آدریان و گرگوئی برخی‌اند. همی

[20] به بررسی توزیع اندازه الیتی گشتاد. استراتژی

کوئیک و انتقال‌های در سطحهای اکارا در

استکان به‌پدرخانه سعیدی و همکاران [21]، شرایط

فیزیکی و نتایج با نمونه شناخته سطحهای شرق

بر الیتی باید به الیتی باید به الیتی باید توزیع

CSD پژوهشگران ایرانی نیز در دو دهه اخیر به بررسی توزیع

اندازه الیت در سطحهای آدریان و گرگوئی برخی‌اند. همی

[20] به بررسی توزیع اندازه الیتی گشتاد. استراتژی

کوئیک و انتقال‌های در سطحهای اکارا در

استکان به‌پدرخانه سعیدی و همکاران [21]، شرایط

فیزیکی و نتایج با نمونه شناخته سطحهای شرق

بر الیتی باید به الیتی باید به الیتی باید توزیع

CSD پژوهشگران ایرانی نیز در دو دهه اخیر به بررسی توزیع

اندازه الیت در سطحهای آدریان و گرگوئی برخی‌اند. همی

[20] به بررسی توزیع اندازه الیتی گشتاد. استراتژی

کوئیک و انتقال‌های در سطحهای اکارا در

استکان به‌پدرخانه سعیدی و همکاران [21]، شرایط

فیزیکی و نتایج با نمونه شناخته سطحهای شرق

بر الیتی باید به الیتی باید به الیتی باید توزیع

CSD پژوهشگران ایرانی نیز در دو دهه اخیر به بررسی توزیع

اندازه الیت در سطحهای آدریان و گرگوئی برخی‌اند. همی

[20] به بررسی توزیع اندازه الیتی گشتاد. استراتژی

کوئیک و انتقال‌های در سطحهای اکارا در

استکان به‌پدرخانه سعیدی و همکاران [21]، شرایط

فیزیکی و نتایج با نمونه شناخته سطحهای شرق

بر الیتی باید به الیتی باید به الیتی باید توزیع

CSD پژوهشگران ایرانی نیز در دو دهه اخیر به بررسی توزیع

اندازه ا)}
شکل ۱ موقعیت جغرافیایی (الف) و نقشه زمین‌شناسی ساده شده (ب) نوار ماگمایی داورزن- عباس آباد. برگرفته شده از مرجع [۳۲].

شکل ۲(الف) نمایی از تناوب سنگ‌های آندزیتی- پازیتی در انتهای عباس آباد در امتداد جاده عباس آباد- عباس آباد. (ب) تصویر نمونه دستی از سخت پیروکسن پورفیری در سنگ‌های آندزیتی منطقه. (ت) تصویر ماکروسکوپی از سخت پیروکسن- پلاژیوت پورفیری در سنگ‌های منطقه.
سنگ‌های آتشنشانی منطقه دارای یافته‌های ریزبلوری-
پربریزه، هیالومیکروپلیتی پربریزه، چربی‌زی (تراکتیت)،
گلوپربریزه و گریزلی هستند (شکل ۳). یافته‌ی شیبی، تغییر و
تحول پیوسته شامل شریف و حذف برخی از کانال‌ها و حضور
پربریزه نانه‌ای (گریزلی، خورگردی، اسکلتی و کاناده‌ای
تحلیل رفت و جذبی، بیانگر مسیر پیچیده شکل‌گیری مکاک و
پربریزه فراندی مختلف تحلوا مکاکی در آمیختگی پوسته‌ی ویست
است [۵۳]).

بخش‌های و روش انجام پژوهش
روش توزیع اندام‌های بلوری بررسی درسندهای مرتب با
صعود، جابجایی و فوران مکاک افتخاده می‌شود. این فرآیندهای
پربریزه مکاکی پربریزه ریزبلوری، زمان طی پلور و سهم
حمجی پلوره، فراندی شیبی رخ داده در طی پلور (رشد و
هسته‌بندی) سرعت تقدمی طی انجام مکاک، به‌ویژه
ازبایی نهایت نسبی تفریق، تراکم و درشت‌شگی بافتی (تکامل
استوادل). خلاصه جمع‌ی‌های بلوری منفیت در مکاک هستند
[۵۴-۱۹]. نخ رشد و هسته‌بندی پلور، انباشت پلوری و
تفریق، درشت‌شگی، اختلال مکاکی و چندتراکتیک مکاک‌ها
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختلال مکاکی و چندتراکتیک
SDS برش بررسی‌های
شده برای مکاکی‌های
فرآیندهای سنگ‌شناختی نامیده می‌شوند. از میان کاردی‌های یاد
اختال
استفاده از نرم‌افزارهای تحلیلگر تصویر همانند ایمیج جی در این پژوهش، از روش سوم برای تعیین حاشیه بلوهای پلاژیوکلز و پروکسین استفاده شد. به منظور تحلیل کمی توزیع اندازه بلوهای پلاژیوکلز و اینکانس، از بین نمونه‌های سطحی برداشت شده از عمق‌های بازالتی- آندزیتی تیوربریت بهره می‌برد. تعداد ۸ نمونه انتخاب و در کارگاه‌های مختلفی حساب شده. از آنها در سه جهت، مقاطع نازک میکروسکوپی تهیه شد (۱ و ۲ و ۳). در جدول ۱، نمودار (Ln(n) (ترکام (جمعیت) سنتی به اندازه انشاگیری از بزرگترین ۱۰ بلوه) به ترتیب درمیانگین mm و برای ترکام جمعیت mm12-9.0 ۳۴-1 ۴(۰,۵ ۶۳-۱۳۴-۱ بلوهای به روش ثبات ثابت کیفیت و عرض آن در میکروسکوپیکی است. روش پیچیده تر، تصویربرداری از کل یا بخشی از مقطع نازک است که به سه روش قابل انجام است: ۱- اندازه‌گیری عرض و عرض برای ثابت کیفیت استفاده از خطکش بهصورت ثابت یا با استفاده از نرم‌افزار. ۲- بارا پیچیده حاشیه بلوه یک برکند کافی داشته و همین بلوه استفاده از نرم‌افزار تحلیلگر تصویر. ۳- برای ورودی نرسیدن تکمیل تهیه نازک در از بلوه به شکل پایدار و مضمون تبیین داده دویدید مقاطع نازک به مقادیر واقعی سه بعدی، از نرم‌افزار تخصصی استفاده می‌شود.

جدول ۱ مشخصات نمونه‌های سطحی و مخصوص جغرافیایی محل برداشت آنها بر اساس

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>موئیت جغرافیایی</th>
<th>عرض جغرافیایی</th>
<th>طول جغرافیایی</th>
<th>نام سطح شناسی</th>
<th>محل نمونه‌گیری</th>
<th>سن نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰ AB</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>کوه ۴۴۴۴۴۴۴۴</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
</tr>
<tr>
<td>۴۳ AB</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>کوه ۴۴۴۴۴۴۴۴</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
</tr>
<tr>
<td>۴۸ AB</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>کوه ۴۴۴۴۴۴۴۴</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
</tr>
<tr>
<td>۴۱ AB</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>کوه ۴۴۴۴۴۴۴۴</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
</tr>
<tr>
<td>۲۴ AB</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>کوه ۴۴۴۴۴۴۴۴</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
</tr>
<tr>
<td>۹۶ AB</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>کوه ۴۴۴۴۴۴۴۴</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
</tr>
<tr>
<td>۴۲ AB</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>کوه ۴۴۴۴۴۴۴۴</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
</tr>
<tr>
<td>۴۳ AB</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>۴۴۴۴۴۴۴۴</td>
<td>کوه ۴۴۴۴۴۴۴۴</td>
<td>بلوه باریک</td>
<td>۴۴۴۴۴۴۴۴</td>
</tr>
</tbody>
</table>
شكل ۵ تصاویر میکروسکوپی از مقاطع گره دیگر تراکی پریوکسین در سه بعد (نمونههای شماره ۵۴و ۵۴-۱) به همراه تصاویر دوربینی و نمودارهای آنها برای بلورهای پلیپروپیلئن. همه تصاویر دارای مقیاس ۲ میلی‌متر بوده و با عدسی ۲.۵ میکروسکوپ تهیه شده‌اند.

بهترین بیضی منطقه‌بندی بلور به عنوان مدل انتخابی در نظر گرفته می‌شود. عدد گردش‌گذاری برای بلورهای پلیپروپیلئن و پریوکسین از بین اعداد صفر یا یک در نظر گرفته می‌شود. سپس، رگرسیون حجم، تغییر و شبیه از طریق نرم‌افزار CSD محاسبه می‌شود (أ. ۸، ۱۱۰، ن. در ترمافاز CSD، بهترین خطي که داده‌های خروجی را نشان دهد که با توجه به مقدار خطأ، داده‌ها لگد به خط مستقیم تطبیق دارند. این تطابق با علائم اختصاصی ضریب می‌شود. مقادیر Q بزرگتر از Q برداشت سیستم رگرسیون حجم، تغییر و شبیه از طریق نرم‌افزار CSD محاسبه می‌شود (أ. ۸، ۱۱۰).
تولید آنزیم، نرخ رشد و مدت زمان اتمام بلوهای پلاژیوکلاژ و پیروکسن در آشپزخانه ماماگی
بی‌خوابی و تخلیه نوزاد از ابتکار بلوهای پلاژیوکلاژ در هفته نوزاد و پیروکسن ها در هفته نوزاد انجام گنجانه گستردگی شد و حتی به کار رفته برای نوزاد بلوهای پلاژیوکلاژ
در مقاطع تهیه شده از سنگ اشکشانی منطقه عباسی آباد در سه ماهه، بلوهای پلاژیوکلاژ در سخت و سخت سخت نه تنها اهمیت دارند. این فاکتور با باریک و جامد [99] همچون دارای که نشان را می‌دهد که این بلوهای پیروکسن در کودکان و دودی، به نمونه‌های با بیش از تقریباً 200 بلوه نیاز است.

جدول 2: تعداد بلوهای پلاژیوکلاژ در هر گستره از مسافت نوزادگیری شده نمونه سنگهای تراکی پازیتی با شماره نمونه 54

<table>
<thead>
<tr>
<th>گستره</th>
<th>تعداد بلوهای پلاژیوکلاژ</th>
<th>تعداد بلوهای پیروکسن</th>
</tr>
</thead>
<tbody>
<tr>
<td>54PL</td>
<td>442</td>
<td>319</td>
</tr>
<tr>
<td>54-4PL</td>
<td>320</td>
<td>218</td>
</tr>
<tr>
<td>54-2PL</td>
<td>320</td>
<td>218</td>
</tr>
</tbody>
</table>

جدول 3: تعداد بلوهای پیروکسن در هر گستره از مسافت نوزادگیری شده نمونه سنگهای تراکی پازیتی با شماره نمونه 54

<table>
<thead>
<tr>
<th>گستره</th>
<th>تعداد بلوهای پیروکسن</th>
</tr>
</thead>
<tbody>
<tr>
<td>54PL</td>
<td>442</td>
</tr>
<tr>
<td>54-4PL</td>
<td>320</td>
</tr>
<tr>
<td>54-2PL</td>
<td>320</td>
</tr>
</tbody>
</table>

نمره استادی در مورد افتزار است. برای ساخته‌بازی نمونه‌هایی که تهیه شده است، یک CSDcorrection به توجه به ساخته‌بازی در نظر گرفته شده است. در این پژوهش، روش نظر برگر و هم[11] نشان داده است. در رشد، بلوهای پلاژیوکلاژ، رشد و رشد
برای رژیم‌های پلاژیوکلاژ لحاظ شدند. سیستم‌های ملد زمان اتاق بلوهای پلاژیوکلاژ برای نمونه‌های تولید بلوهای پلاژیوکلاژ با بلوهای پلاژیوکلاژ (CSD) در هفته نوزاد و بلوهای پلاژیوکلاژ، بلوهای پلاژیوکلاژ از این گستره‌ها، با بلوهای پلاژیوکلاژ (CSD) در روش تولیدبایدهای این شکن به کار
گستره اتاق موجود است.
جدول 4: شبیه محل تقطع و یک هسته بندی و زمان رشد های يک از نمونه های CSD بلورهای پلاژیوکلاز در نمونه های آندزینی و پاژالی که دارای شکستگی هستند.

جدول 5: میانگین زمان رشد و سرعت هسته بندی های یک از نمونه های CSD بلورهای پیروکس موجب ایجاد تنشی بادی که دارای شکستگی هستند.
جدول 6: شیب، محل تقاطع و سرعت هسته‌بندی و رشد هر یک از نمودارهای CSD بلوارهای پیروکسن در نمونه‌های اندیز-بازالتی که دارای شکل‌گی و خمیدگی هستند.

<table>
<thead>
<tr>
<th>شیب</th>
<th>محل تقاطع</th>
<th>سرعت هسته‌بندی برای Yr (mm²/s)</th>
<th>سرعت هسته‌بندی برای Yr (mm²/s)</th>
<th>زمان رشد</th>
<th>خطا با شیب کم</th>
<th>CSD برای Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>YR</td>
<td>1000</td>
<td>20</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>YO</td>
<td>1000</td>
<td>20</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>YP</td>
<td>1000</td>
<td>20</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>YQ</td>
<td>1000</td>
<td>20</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>YR</td>
<td>1000</td>
<td>20</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>YO</td>
<td>1000</td>
<td>20</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>YP</td>
<td>1000</td>
<td>20</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>YQ</td>
<td>1000</td>
<td>20</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

دیده‌گاهی. با مقایسه نمودارهای تویزیوز اندازه بلوارهای پلاژیوکلاز و پیروکسن در هر یک از سه‌گونه بازالتی- آندزیتی منطقه عباس آباد نمودارهای ارائه شده توسط این پژوهشگران (شکل‌های 6 تا 9) می‌توان تفسیرهای مناسبی ارائه کرد. برای LSW درشت‌نشانی برای دو مدل فرض شده است: (1) مدل CN در مدیر فرضی مشخص شده است نماینده جمعیت‌های بلوار و هسته‌بدی نهایی بلوار از آن فراخوان بازیتخت یا تکامل انباشت (درشت‌نشانی) بیشتر داده می‌شود. [121].

تفسیر منحنی‌های CSD برای بلوارهای پلاژیوکلاز و پیروکسین در سنگ‌های بازالتی - آندزیتی عباس آباد.

d. برخوردار است. شکست با غشایه در این نمودار، به فراخوانی جن ایجاد و از این رفتگی بلوار، تراکم، اخلاق جمعیت‌های بلوار و هسته‌بدی نهایی بلوار در اثر فراخوان بازیتخت یا تکامل انباشت (درشت‌نشانی) نسبت داده می‌شود. [121].

*هیگنز و روبرز [110]. هیگنز [15] و لنتز و مک سونین [120] و اندروز و همکاران [121] نمودارهای برای تفسیر شکل‌های مختلف تویزیوز اندازه بلوارا در سنگ‌های آذرین ارائه

![شکل 6: نمودارهای نقاشی در سه‌گونه پیروکسن، مورت از شکل SDG، افراشتر سررندگی، و افزایش زمان اقامت با نرخ رشد ب، انباشت و جدايش بلوارا، در شدت‌دگی بلوارها، اختلال مادگی.](https://i.imgur.com/5.png)
سک‌های ماکمایی [12] - رشد و هسته‌نیابی متوالی بلورها. 2 - تیه‌شده‌گی از بلورهای یوگه‌کش یا بلورهای یوگه‌کش یا یوگه‌کش‌های با رشد مشابه در نتیجه متوالی. 3 - فرآیند توزیع بلورهای یوگه‌کش یا بلورهای یوگه‌کش یا یوگه‌کش‌های با رشد مشابه در نتیجه متوالی. 4 - توزیع متوالی بلورهای یوگه‌کش یا بلورهای یوگه‌کش یا یوگه‌کش‌های با رشد مشابه در نتیجه متوالی. 5 - توزیع متوالی بلورهای یوگه‌کش یا بلورهای یوگه‌کش یا یوگه‌کش‌های با رشد مشابه در نتیجه متوالی. 6 - توزیع متوالی بلورهای یوگه‌کش یا بلورهای یوگه‌کش یا یوگه‌کش‌های با رشد مشابه در نتیجه متوالی.
فناوری از فرآیندهای مکانیکی محسوب می‌شود، که در آن آراشی دواره و فشرده‌گی بلورها، سبب خروج سیال‌های موجود در منشأ آن‌ها می‌شود.

نمونه CSD 1 نمونه CSD 2 نمونه CSD 3 نمونه CSD 4 نمونه CSD 5 نمونه CSD 6 نمونه CSD 7 نمونه CSD 8 نمونه CSD 9 نمونه CSD 10 نمونه CSD 11 نمونه CSD 12 نمونه CSD 13 نمونه CSD 14 نمونه CSD 15 نمونه CSD 16 نمونه CSD 17 نمونه CSD 18 نمونه CSD 19 نمونه CSD 20 نمونه CSD 21 نمونه CSD 22 نمونه CSD 23 نمونه CSD 24 نمونه CSD 25 نمونه CSD 26 نمونه CSD 27 نمونه CSD 28 نمونه CSD 29 نمونه CSD 30 نمونه CSD 31 نمونه CSD 32 نمونه CSD 33 نمونه CSD 34 نمونه CSD 35 نمونه CSD 36 نمونه CSD 37 نمونه CSD 38 نمونه CSD 39 نمونه CSD 40 نمونه CSD 41 نمونه CSD 42 نمونه CSD 43 نمونه CSD 44 نمونه CSD 45 نمونه CSD 46 نمونه CSD 47 نمونه CSD 48 نمونه CSD 49 نمونه CSD 50 نمونه CSD 51 نمونه CSD 52 نمونه CSD 53 نمونه CSD 54 نمونه CSD 55 نمونه CSD 56 نمونه CSD 57 نمونه CSD 58 نمونه CSD 59 نمونه CSD 60 نمونه CSD 61 نمونه CSD 62 نمونه CSD 63 نمونه CSD 64 نمونه CSD 65 نمونه CSD 66 نمونه CSD 67 نمونه CSD 68 نمونه CSD 69 نمونه CSD 70 نمونه CSD 71 نمونه CSD 72 نمونه CSD 73 نمونه CSD 74 نمونه CSD 75 نمونه CSD 76 نمونه CSD 77 نمونه CSD 78 نمونه CSD 79 نمونه CSD 80 نمونه CSD 81 نمونه CSD 82 نمونه CSD 83 نمونه CSD 84 نمونه CSD 85 نمونه CSD 86 نمونه CSD 87 نمونه CSD 88 نمونه CSD 89 نمونه CSD 90 نمونه CSD 91 نمونه CSD 92 نمونه CSD 93 نمونه CSD 94 نمونه CSD 95 نمونه CSD 96 نمونه CSD 97 نمونه CSD 98 نمونه CSD 99 نمونه CSD 100 نمونه CSD 101 نمونه CSD 102 نمونه CSD 103 نمونه CSD 104 نمونه CSD 105 نمونه CSD 106 نمونه CSD 107 نمونه CSD 108 نمونه CSD 109 نمونه CSD 110 نمونه CSD 111 نمونه CSD 112 نمونه CSD 113 نمونه CSD 114 نمونه CSD 115 نمونه CSD 116 نمونه CSD 117 نمونه CSD 118 نمونه CSD 119 نمونه CSD 120 نمونه CSD 121 نمونه CSD 122 نمونه CSD 123 نمونه CSD 124 نمونه CSD 125 نمونه CSD 126 نمونه CSD 127 نمونه CSD 128 نمونه CSD 129 نمونه CSD 130 نمونه CSD 131 نمونه CSD 132 نمونه CSD 133 نمونه CSD 134 نمونه CSD 135 نمونه CSD 136 نمونه CSD 137 نمونه CSD 138 نمونه CSD 139 نمونه CSD 140 نمونه CSD 141 نمونه CSD 142 نمونه CSD 143 نمونه CSD 144 نمونه CSD 145 نمونه CSD 146 نمونه CSD 147 نمونه CSD 148 نمونه CSD 149 نمونه CSD 150 نمونه CSD 151 نمونه CSD 152 نمونه CSD 153 نمونه CSD 154 نمونه CSD 155 نمونه CSD 156 نمونه CSD 157 نمونه CSD 158 نمونه CSD 159 نمونه CSD 160 نمونه CSD 161 نمونه CSD 162 نمونه CSD 163 نمونه CSD 164 نمونه CSD 165 نمونه CSD 166 نمونه CSD 167 نمونه CSD 168 نمونه CSD 169 نمونه CSD 170 نمونه CSD 171 نمونه CSD 172 نمونه CSD 173 نمونه CSD 174 نمونه CSD 175 نمونه CSD 176 نمونه CSD 177 نمونه CSD 178 نمونه CSD 179 نمونه CSD 180 نمونه CSD 181 نمونه CSD 182 نمونه CSD 183 نمونه CSD 184 نمونه CSD 185 نمونه CSD 186 نمونه CSD 187 نمونه CSD 188 نمونه CSD 189 نمونه CSD 190 نمونه CSD 191 نمونه CSD 192 نمونه CSD 193 نمونه CSD 194 نمونه CSD 195 نمونه CSD 196 نمونه CSD 197 نمونه CSD 198 نمونه CSD 199 نمونه CSD 200 نمونه CSD 201 نمونه CSD 202 نمونه CSD 203 نمونه CSD 204 نمونه CSD 205 نمونه CSD 206 نمونه CSD 207 نمونه CSD 208 نمونه CSD 209 نمونه CSD 210 نمونه CSD 211 نمونه CSD 212 نمونه CSD 213 نمونه CSD 214 نمونه CSD 215 نمونه CSD 216 نمونه CSD 217 نمونه CSD 218 نمونه CSD 219 نمونه CSD 220 نمونه CSD 221 نمونه CSD 222 نمونه CSD 223 نمونه CSD 224 نمونه CSD 225 نمونه CSD 226 نمونه CSD 227 نمونه CSD 228 نمونه CSD 229 نمونه CSD 230 نمونه CSD 231 نمونه CSD 232 نمونه CSD 233 نمونه CSD 234 نمونه CSD 235 نمونه CSD 236 نمونه CSD 237 نمونه CSD 238

\[\text{شکل 10 نمونه‌های جمعیت بلوری نسبت به اندازه دانه (CSD) برای بلورهای پلاژیوکلاز در سنگ‌های بازالتی - اندزینیی منطقه عباس‌آباد.} \]
نمودارهای CSD برای بلوهای پیروکس و پلاژیوکلاز در شکل ٢٣، همه نمودارهای CSD برای بلوهای پیروکس و پلاژیوکلاز (ب) را در سه شکل از نوین لرزه‌ای- اندزینی منطقه عباس آباد در یک نمودار نشان می‌دهد. نمودار بلوهای پیروکس، بینانگ روندهای تفیق، ابزارش و اختلال جمعیت- های بلوهای هستند (مشاهده با نمودار ت و شکل ٩). نمودار بلوهای پلاژیوکلاز نیز مجموعه‌ای از فرآیندهای سنجش‌سنجی ابزارش، تفیق، درشت‌شکنی و اختلال را به تصویر می‌کشد (مشاهده با نمودار ب، ث در شکل ٧، منحنی‌های ١، ٢ و ٣ در شکل ٦، گریزه ب در شکل ٧ نمودارهای ب، ب، ح و خ در شکل ٩). نتایج حاصل از تحلیل نمودارهای توزیع اندازه بلو در این پژوهش، با نتایج حاصل از بررسی‌های زمین‌شناسی [٣٢] همخوانی دارد و خاتمه‌گذار مشترک نموهای از طریق

۲۳ همخوانی دارد و خاتمه‌گذار مشترک نموهای از طریق

شکل ١٣: نمودارهای جمعیت بلوهای پیروکس و پلاژیوکلاز در ناحیه عباس آباد. آفرینه، درشت‌شکنی و اختلال را به تصویر می‌کشد.

قدراتی

نوسی و نقش مقاله از جویه معاونت یزدی اشناسا ساختگی

رواهد به زمینه تجربه مالی و معنوی از انجام این

یزدی اشنادی می‌کنند.

مراجع

[28] Elyassi Golonji I., Sheykhhaghlou S., “Crystal Size Distribution of Pyroxenes from Aliabad
