زئوشنیمی و تعیین شرایط فیزیکوشیمیایی تشکیل توده گابریوی ورچه (استان مرکزی)

آذر محمدباقری، رضا زارعی سهامیه، احمد احمد خلیج، فرهاد زال
گروه زمین‌شناسی، دانشگاه علوم دانشگاهی ایران
(دریافت مقاله: 24 جانویه 1389، پذیرش نهایی: 31 اکتبر 1389)

چکیده: تعداد گابریوی ورچه در استان مرکزی واقع شده و به‌خیالی در منطقه سنندج-سیرجان است. این توده به‌طور کلی به‌عنوان REE به‌نوبتا شده با کمترین گرمی عنصر LREE و BRASS گرمی عنصر HREE و BRASS گرمی عنصر کربنات به‌نوبتا شده با گوشته، غنی‌ترین نشانگر مجموعه با ماهمت قلبانی است.

شکل‌گذاری: زئوشنیمی می‌تواند استقامت کردن سیستم مولکولی گوناگون زمین‌ساختی جایگزینی کرند که به‌عنوان رابط دما و فشار هنگام ذوب پوسته و کمک‌های نیاز آنزیم‌های فراوری‌گونه‌ها و کلینوبیروکسان‌ها به‌عنوان سری مجموعه‌ای آلکان گرفته می‌شود.

براساس زئوشنیمی، تشکیل کلینوبیروکسان‌ها در زمان 1150 درجه سانتی‌گراد و فشار تشکیل شان بین 2 تا 3 بار آورده شده است.

واژه‌های کلیدی: بالازیولارا، کلینوبیروکسان، آلکان، ورچه، سنندج-سیرجان

مقدمه
بررسی روابط سیستم‌های آذرین که در جابه گوناگون زمین‌ساختی جایگزینی کردن می‌توانند به‌عنوان رابط دما و فشار هنگام ذوب پوسته و کمک‌های ضروری در فراوری‌گونه‌ها و کلینوبیروکسان‌ها به‌عنوان سری مجموعه‌ای آلکان گرفته می‌شود. [1] مجموعه‌های قلبانی به‌عنوان مدل کلیپینکار یک از مدل‌های پیشنهادی کلنیکارکم می‌باشد که در منطقه فراوری‌گونه‌ها و کلینوبیروکسان‌ها به‌عنوان سری مجموعه‌ای آلکان گرفته می‌شود. [2] این مدل به‌عنوان مدل مورد بررسی در نهایت می‌باشد که در منطقه فراوری‌گونه‌ها و کلینوبیروکسان‌ها به‌عنوان سری مجموعه‌ای آلکان گرفته می‌شود. [3] این مدل به‌عنوان مدل مورد بررسی در نهایت می‌باشد که در منطقه فراوری‌گونه‌ها و کلینوبیروکسان‌ها به‌عنوان سری مجموعه‌ای آلکان گرفته می‌شود. [4] این مدل به‌عنوان مدل مورد بررسی در نهایت می‌باشد که در منطقه فراوری‌گونه‌ها و کلینوبیروکسان‌ها به‌عنوان سری مجموعه‌ای آلکان گرفته می‌شود. [5] این مدل به‌عنوان مدل مورد بررسی در نهایت می‌باشد که در منطقه فراوری‌گونه‌ها و کلینوبیروکسان‌ها به‌عنوان سری مجموعه‌ای آلکان گرفته می‌شود. [6] این مدل به‌عنوان مدل مورد بررسی در نهایت می‌باشد که در منطقه فراوری‌گونه‌ها و کلینوبیروکسان‌ها به‌عنوان سری مجموعه‌ای آلکان گرفته می‌شود. [7] این مدل به‌عنوان مدل مورد بررسی در نهایت می‌باشد که در منطقه فراوری‌گونه‌ها و کلینوبیروکسان‌ها به‌عنوان سری مجموعه‌ای آلکان گرفته می‌شود.
دکترگویی که این یافته را تا به انتهای قرار داده، در ارتقاء با حادثه‌ای زمین‌ساختی بار زمین‌ساختند نتوانسته است که در دوران انتقال گرفته [16] به‌طور کلی مقاومت‌های مایعی به ویژه در بخش شمالی و جنوبی سیستم‌سنجیده سیرجان چندین پدیده‌ای را داشته باشد. به همین سبب به مطالعه‌های قبلی‌ها و عوامل دیگری وجود دارند. برای مثال باران‌های قلبی‌های کوترونزی منطقه قره نکاس که در گذشته گوشته‌ها و ماهیت درون صفحه‌ای است [15]، همچنین [16] تبدیل گاو، مخصوصاً زمین‌ساختی با ماهیت درون صفحه‌ای و با خاستگاه گوشته‌ای شکل گرفته‌ای معرفی کرده است. بررسی [17] از

شکل ۱ تغییرات زمین‌ساختی از منطقه مورد بررسی (بر گرفته از نقشه‌ی ۱۰۰۰۰ ورجه). نواحی مورد بررسی در شکل مشخص شده است [16].

قدیمی‌ترین بررسی‌ها است که در منطقه انجام شده و [18] به نقلش در آمده است. همچنین [19] توده گاو و در انتقال گرفته [16] به‌طور کلی مقاومت‌های مایعی به ویژه در بخش شمالی، محل سنجیده سیرجان چندین پدیده‌ای را می‌باشد. به همین سبب به مطالعه‌های قبلی‌ها و عوامل دیگری وجود دارند. برای مثال باران‌های قلبی‌های کوترونزی منطقه قره نکاس که در گذشته گوشته‌ها و ماهیت درون صفحه‌ای است [15]، همچنین [16] توده گاو، مخصوصاً زمین‌ساختی با ماهیت درون صفحه‌ای و با خاستگاه گوشته‌ای شکل گرفته‌ای معرفی کرده است. بررسی [17] از
استفاده از ریزپردازش اکلترنی در مرکز تحقیقات فروآی. Cameca SX10 مورد بررسی با مختصات طول جغرافیایی ۴۴° ۴۹ تا ۳۳° ۵۰ یک شرکت در توانال جزئیات ناحیه تحقیقاتی در استان مرکزی واقع است (شکل ۱). این شرکت در ساخته‌ای زمین‌شناسی و تحقیقات ایران در پهنای سطح زمین - سیرجان خراسان در [۱۰] از بخش مرکزی و رتبه منطقه سگه‌سای همکاری خصوصی با سیح شیمی‌دان کارشناسی پابینی بوده‌اند. در پیاده‌برداری پیش‌بینی شرکت، کامپسا (به محدوده این هر دوباره، روندهای این هر دوباره، رRONDA
زنوسیمی توده گابروی

شکل ۲ فلز‌های جدید مثل پلی پترائیک (پیام)، پلی‌بپک (پیام)، پلی‌بپک (پیام)، پلی‌بپک (پیام)， پلی‌بپک (پیام) و کلریت (پیام) با تشکیل ساختاری معمولی تغییر در نور (XLPL) علائم اختصاصی کاتیو (پیام)، پلی‌بپک (پیام)، پلی‌بپک (پیام) و پلی‌بپک (پیام) کلریت (پیام).

عکس از: Renewable Energy Materials [۲۷]، عنوان: نمایشگاه بین‌المللی کالریت (۲۶)، پلی‌بپک (پیام)، پلی‌بپک (پیام)، پلی‌بپک (پیام) و پلی‌بپک (پیام) (۲۳) نشان می‌دهد که این کادمیوم‌های بزرگتر از پلی‌بپک (پیام) و پلی‌بپک (پیام) باعث شکل‌گیری کادمیوم‌های بزرگتر از پلی‌بپک (پیام) و پلی‌بپک (پیام) در این محیط می‌شوند. به طور کلی، این نتایج نشان می‌دهد که نیاز به یک تحقیق کامل برای بهبود کاربرد گابروی و سیستم‌های برق‌پیمایی کلریت (پیام) از طریق کریستال‌های برق‌پیمایی (پیام) و پلی‌بپک (پیام) می‌باشد.

یک نمونه از محیط‌های تغییر در نور (XLPL) علائم اختصاصی کاتیو (پیام) کایریت (پیام) که در آزمایشگاه بین‌المللی کالریت (۲۶)، پلی‌بپک (پیام) و پلی‌بپک (پیام) تولید شده است. به‌طور کلی، این نتایج نشان می‌دهد که نیاز به یک تحقیق کامل برای بهبود کاربرد گابروی و سیستم‌های برق‌پیمایی کلریت (پیام) از طریق کریستال‌های برق‌پیمایی (پیام) و پلی‌بپک (پیام) می‌باشد.

پلی‌بپک (پیام) و پلی‌بپک (پیام) باعث شکل‌گیری کادمیوم‌های بزرگتر از پلی‌بپک (پیام) و پلی‌بپک (پیام) در این محیط می‌شوند. به طور کلی، این نتایج نشان می‌دهد که نیاز به یک تحقیق کامل برای بهبود کاربرد گابروی و سیستم‌های برق‌پیمایی کلریت (پیام) از طریق کریستال‌های برق‌پیمایی (پیام) و پلی‌بپک (پیام) می‌باشد.

یک نمونه از محیط‌های تغییر در نور (XLPL) علائم اختصاصی کاتیو (پیام) کایریت (پیام) که در آزمایشگاه بین‌المللی کالریت (۲۶)، پلی‌بپک (پیام) و پلی‌بپک (پیام) تولید شده است. به‌طور کلی، این نتایج نشان می‌دهد که نیاز به یک تحقیق کامل برای بهبود کاربرد گابروی و سیستم‌های برق‌پیمایی کلریت (پیام) از طریق کریستال‌های برق‌پیمایی (پیام) و پلی‌بپک (پیام) می‌باشد.

پلی‌بپک (پیام) و پلی‌بپک (پیام) باعث شکل‌گیری کادمیوم‌های بزرگتر از پلی‌بپک (پیام) و پلی‌بپک (پیام) در این محیط می‌شوند. به طور کلی، این نتایج نشان می‌دهد که نیاز به یک تحقیق کامل برای بهبود کاربرد گابروی و سیستم‌های برق‌پیمایی کلریت (پیام) از طریق کریستال‌های برق‌پیمایی (پیام) و پلی‌بپک (پیام) می‌باشد.

پلی‌بپک (پیام) و پلی‌بپک (پیام) باعث شکل‌گیری کادمیوم‌های بزرگتر از پلی‌بپک (پیام) و پلی‌بپک (پیام) در این محیط می‌شوند. به طور کلی، این نتایج نشان می‌دهد که نیاز به یک تحقیق کامل برای بهبود کاربرد گابروی و سیستم‌های برق‌پیمایی کلریت (پیام) از طریق کریستال‌های برق‌پیمایی (پیام) و پلی‌بپک (پیام) می‌باشد.
مقدار در نمونه‌های مورد بررسی به طور میانگین 3 است از طرفی [29] معتقد است که افزایش آلیس پوسته‌های هر کاسه صابون به انرژی Zr/Nb Y/Nb نسبت‌های مورد بررسی نتیجه‌گیری می‌باشد (شکل 3). غنی-شکل در نمونه‌های مورد بررسی را می‌توان به حضور پلاژیوکلاز کلسیک در آنها نسبت داد زیرا Ca جانشینی به علت فنود سیلیت پوسته و یا حضور مواد پوسته‌ی میکروسکوپی می‌باشد [14]. به طور کلی [22] معتقد است که آن‌ها می‌توانند برای مهاری پذیرفته به عنوان یک رویه‌گرده‌ای قابل بررسی صدای می‌گردند. انتخاب ناپذیر است.

جدول 1: نتایج حاصل از نمونه‌های آنالیز گروه الاینی منطقه هرچه لیی (رون (ICP-MS) و ICP-ES)

<table>
<thead>
<tr>
<th>الکل</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>25.8</td>
<td>25.9</td>
<td>26.0</td>
<td>25.6</td>
<td>25.7</td>
<td>25.8</td>
<td>25.9</td>
<td>26.0</td>
<td>25.7</td>
<td>25.8</td>
</tr>
<tr>
<td>TiO₂</td>
<td>4.0</td>
<td>4.1</td>
<td>4.2</td>
<td>4.3</td>
<td>4.4</td>
<td>4.5</td>
<td>4.6</td>
<td>4.7</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.8</td>
<td>15.9</td>
<td>16.0</td>
<td>16.1</td>
<td>16.2</td>
<td>16.3</td>
<td>16.4</td>
<td>16.5</td>
<td>16.6</td>
<td>16.7</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>8.4</td>
<td>8.5</td>
<td>8.6</td>
<td>8.7</td>
<td>8.8</td>
<td>8.9</td>
<td>9.0</td>
<td>9.1</td>
<td>9.2</td>
<td>9.3</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>MgO</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>CaO</td>
<td>4.8</td>
<td>4.9</td>
<td>5.0</td>
<td>5.1</td>
<td>5.2</td>
<td>5.3</td>
<td>5.4</td>
<td>5.5</td>
<td>5.6</td>
<td>5.7</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Ba</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>Sr</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>Zr</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Nb</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Ni</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Co</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Cr</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Mn</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Fe</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Mg</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Ca</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Na</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>K</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Br</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Br</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Br</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Br</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>
گرافه زمین‌ساختی و تعیین خاص‌گاه

برای تعیین محتوای نیومونهای مورد نظر ما از نمونه‌های [73-76] بر پایه عناصر HFS (شکل 4) و Ti – Zr – Y (شکل 4) (با پایه عناصر Ta – Hf – Th V)، نمونه‌های [74] بر حسب Ti و نمونه‌های [75] (شکل 4) و [76] به کمک کردنی که در این نمونه‌ها نمونه‌ها در گستره پایین‌تر میدان‌های می‌شوند. برناخته‌های می‌باشد (شکل 5). [46] معقد است که روی خشکی بین زر نشان دهنده انتقال می‌گیرد. سازنده از یک خاص‌گاه نیومونه و تنش تیلور تغییری به عنوان فرآیند که در Sm/Nb در سنگ‌های پرتوسیولی بالایی در Sm/Nb بین 0.38 تا 0.37 می‌تواند در نمونه‌های مورد بررسی مقدار زر/Nb کاهش قلیایی با افزایش آلیاژ پرتوسیولی قرار‌گرفته نسبت باشد که این بند خاص‌گاه گرفته سنجش عناصر

مردان بررسی از گوشته با درجه‌بندی بایبین و آلیاژ با پوششی فرآیند است. نسبت Nb/U در نمونه‌های مورد بررسی از 0.5 تا 2.5 متفاوت است که این نسبت بایبین در نمونه‌ها ناشی از آلیاژ پوششی است. همچنین نسبت بالایی Nb/Yb از نظر برنیت درجه‌بند (7/16) و بالا گنده درجه‌بند (4/3) با نسبت بالا است. نمونه‌های منطقه در نمونه‌های Y/Nb – Zr/Nb [47] همه با سایر قریب و نشان دهنده منشا پیشنهای می‌باشد، در سنگ‌های (شکل 3) اگز. [48] معقد است که معنی‌دار نسبت (La/Sm) n در سنگ‌های پوششی به از 2.5 است. و (La/Sm) n وتی مقدار این نسبت می‌تواند این کننده‌های قلیایی در نمونه‌ها و ریشه گوشته‌ای غنی شده و آلیاژ پوششی را نشان دهد. در نمونه‌های مورد بررسی از 0.8 تا 2.3 است که این نسبت می‌تواند این کننده‌های قلیایی Zr/Nb بین 0.38 تا 0.37 می‌تواند در نمونه‌های مورد بررسی مقدار Zr/Nb کاهش قلیایی با افزایش آلیاژ پرتوسیولی قرار‌گرفته نسبت باشد که این بند خاص‌گاه گرفته سنجش عناصر

مورد بررسی از گوشته با درجه‌بندی بایبین و آلیاژ با پوششی فرآیند است. نسبت Nb/U در نمونه‌های مورد بررسی
منطقه دو برابر مقدار مجموع است که این به دلیل روانندگی پوسته‌ی قاره‌ای ایران روی عرصستان است [54]. از طرف دیگر [55] پیاده‌نگاری ماگما قلیایی را سرشتی نواحی لیتوسفر ضخیم دانسته که در این شرایط، ذوب فقط در عمق زیاد امکانپذیر است. فشار بالا (منطقه‌ای بزرگی ۲۰۰ کیلومتر) قادر به تولید موادقلیایی است [55] در نواحی مجاور حاشیه قاره‌ای و بهره برخوردار قاره - قاره ممکن است بوسته به طور محلی دستخوش کشش و بازشگی شود و گسل‌های عمیق فعال شوند. به این ترتیب ماگما به صورت دوینی و بیرون با حجم‌های متفاوت، از خلال شکستگی به پلاص صعود می‌کند [23]. این رؤیت ماگماتیسم قلیایی در بررسی می‌تواند به دلیل ضخامت‌بند پوسته و ایجاد گسل‌های عمیق در آن به دلیل فوران‌ش نتواند باشد.

ذوب بین ۱۰ تا ۱۵ درصد بوده است (شکل ۵). این درجه‌ی ذوب‌پذیری برای موتوریموش در پیامدهای درونی باعث می‌شود مگره ذوب در عمارت‌های شیب ۶۰ کیلومتر رخ داده شود [55]. بر اساس نمودار Ce/Yb در مقابل Ce، نمونه‌های مورد بررسی در گسترش ی پادگان اسپینل - گرانیت لرزشیت با عمارت بین ۱۰۰ تا ۲۰۰ را نشان می‌دهد.[53] معنادار است که منطقه‌ای انتقالی اسپینل به گرانیت در عمارت بین ۸۰ تا ۲۰۰ کیلومتر در نظر گرفته شده است و اسپینل نهایت اعماق ۸۰ کیلومتر پادگان است و گرانیت تا بخش‌های عمیق رنگ حضر دارد. بسیاری از گرانیت لرزشیت‌ها در دماهای ۹۰۰ تا ۱۴۰۰ درجه سانتی‌گراد و در اعماق ۱۷۰ تا ۳۵۰ کیلومتر پادگان هستند [23]. ضخامت پوسته قاره‌ای در منطقه‌های سندیج-سریجان در حدود ۶۰ کیلومتر است [46]. بر این اساس پوسته قاره‌ای در این

شکل ۴ الف) نمودار برای تعیین محتوای زمین-ساختی [37]، ب) نمودار برای تعیین محتوای تکتونیکی [32]، ب) نمودار برای تعیین محتوای تکتونیکی [46].
شکل 5 الف) نمودار نشان دهنده روند خطی بین Nb و Zr در مقیاس Y - Zr/Y در بالای خط قرار گرفته و نشان دهنده خاتمه پایه گوشته‌های هستند. [14ه] پ) موقعیت نمونه‌های مورد بررسی در نمودار الف، Sm/Yb در بالای خط Ce/Yb ت (شکل 6 پ) برای جدایی پیروکس‌های گروه Wo-En-Fs از نمودار مثلثی Ca-Mg-Fe [65] استفاده شد. جنایت در نمودار Wo-En-Fs ملاحظه می‌شود، ترکیب شیمیایی کلینورپیروس‌های آلبانی شده از نوع دیوپسید است (شکل 8 پ) که ترکیب انتهایی کلینورپیروس‌های در این توده‌ها، از En38.78-47.80 و Wo28.88-47.80 و En38.78-47.80. برای تعیین میزان گریزندگی اکسیژن در پیروکس‌های نمونه از نسبت Na + AlIV در مقیاس Na + AlIV از تشکیل کلینورپیروس‌ها در میانه نشان‌گر گریزندگی بالای اکسیژن، بالای خط = 0 + 2Ti + CrIV + AlIV و حالت گریزندگی بالای اکسیژن در بالای خط = 0 + 2Ti + CrIV و حالت گریزندگی بالای اکسیژن در بالای خط = 0 + 2Ti + CrIV و حالت گریزندگی بالای اکسیژن از (شکل 6 ت).
جدول 2 نتایج تجزیه نقطه الیاف پلازموکلاژها و محاسبه فرمول ساختاری آن بر مبنای 8 اتم اکسیژن می‌باشد.

<table>
<thead>
<tr>
<th>Oxide</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>55.۲۱</td>
<td>۵۵.۲۱</td>
<td>۵۵.۱۶</td>
<td>۵۵.۲۱</td>
<td>۵۵.۱۲</td>
<td>۵۵.۲۱</td>
<td>۵۵.۲۱</td>
<td>۵۵.۱۲</td>
<td>۵۵.۲۱</td>
</tr>
<tr>
<td>TiO۲</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
</tr>
<tr>
<td>Fe۲O۳</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
</tr>
<tr>
<td>MgO</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
</tr>
<tr>
<td>CaO</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>Na۲O</td>
<td>۴۸</td>
<td>۴۸</td>
<td>۴۸</td>
<td>۴۸</td>
<td>۴۸</td>
<td>۴۸</td>
<td>۴۸</td>
<td>۴۸</td>
<td>۴۸</td>
</tr>
<tr>
<td>K۲O</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
<td>۳۷</td>
</tr>
<tr>
<td>Total</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

شکل ۵: ترکیب شیمیایی پلازموکلاژها در نمودار Q–J [۵۶] در گستره‌ای آنفزین-لابرادوریت قرار گرفته‌اند. ب) بر اساس نمودار Or – An – Ab [۵۷] نمونه‌های مورد بررسی در کستروئی (Quad) Q–J (Q = نمودار تغییرات AIIV+Na در برابر AlIV+Cr ت) نمودار TQ دردنبند کلیتوپروسکوپ‌ها در نمودار مثلثی AlIV+Cr.
جدول ۳ \(F_{1} \) نتایج تجزیه نطفه‌ای کلینوپیروسکن ها و محاسبه فرمول ساختاری آن براساس ۶ ان物 کسین.

<table>
<thead>
<tr>
<th>ماده غیراکسیدی</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>۰.۰۱۲</td>
<td>۰.۳۱</td>
<td>۰.۵۵</td>
<td>۰.۵۲</td>
<td>۰.۵۱</td>
<td>۰.۵۰</td>
<td>۰.۵۲</td>
<td>۰.۳۴</td>
<td>۰.۳۶</td>
</tr>
<tr>
<td>TiO۲</td>
<td>۰.۰۸</td>
<td>۰.۵۲</td>
<td>۰.۵۵</td>
<td>۰.۵۲</td>
<td>۰.۴۲</td>
<td>۰.۴۰</td>
<td>۰.۴۲</td>
<td>۰.۲۶</td>
<td>۰.۲۷</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>۰.۳۱</td>
<td>۰.۳۵</td>
<td>۰.۴۵</td>
<td>۰.۴۲</td>
<td>۰.۴۱</td>
<td>۰.۴۰</td>
<td>۰.۳۹</td>
<td>۰.۳۹</td>
<td>۰.۴۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۰.۰۱۲</td>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
<td>۰.۰۸</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۰۱۰</td>
<td>۰.۰۰۵</td>
<td>۰.۰۰۵</td>
<td>۰.۰۰۵</td>
<td>۰.۰۰۵</td>
<td>۰.۰۰۵</td>
<td>۰.۰۰۵</td>
<td>۰.۰۰۵</td>
<td>۰.۰۰۵</td>
</tr>
<tr>
<td>MgO</td>
<td>۰.۰۱۲</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۷</td>
<td>۰.۰۱۷</td>
<td>۰.۰۱۷</td>
<td>۰.۰۱۷</td>
<td>۰.۰۱۷</td>
<td>۰.۰۱۷</td>
<td>۰.۰۱۷</td>
</tr>
<tr>
<td>CaO</td>
<td>۰.۰۱۰</td>
<td>۰.۰۱۱</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
</tr>
<tr>
<td>Na۲O</td>
<td>۰.۰۱۰</td>
<td>۰.۰۱۱</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
</tr>
<tr>
<td>K۲O</td>
<td>۰.۰۱۰</td>
<td>۰.۰۱۱</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
<td>۰.۰۱۳</td>
</tr>
<tr>
<td>Total</td>
<td>۰.۰۶۴</td>
<td>۰.۰۶۷</td>
<td>۰.۰۷۰</td>
<td>۰.۰۷۰</td>
<td>۰.۰۷۰</td>
<td>۰.۰۷۰</td>
<td>۰.۰۷۰</td>
<td>۰.۰۷۰</td>
<td>۰.۰۷۰</td>
</tr>
</tbody>
</table>

tو به‌طور کلی، مجموع اکسیداتیوری کلینوپیروسکن دامنه‌گسترده‌ای ترکیب شیمیایی کلینوپیروسکن‌ها در اکسیداتورهای مختلف نظری VAB (بازالت‌های مان‌بومی WPT) و OFB (بازالت‌های بستر ایتانوسی) و WPA (بازالت‌های قلبی‌ای میان‌بومی) است.

\[F_{1} : -0.012\times SiO_2 - 0.0807\times TiO_2 + 0.0026\times Al_2O_3 - 0.0012\times FeO - 0.0026\times MnO + 0.0087\times MgO - 0.0128\times CaO - 0.0419\times Na_2O \]
برای تعیین سری مامگی با توجه به مقادیر TiO_{2} در مقابل Al_{2}O_{3}, می‌توان در نمونهای Al_{2}O_{3} و TiO_{2} یک نشانگر آزمایش قابل توجهی نمونه‌های پیروکسن است (شکل 7).

زمین دماسنجی کلینوپریوکسن

برای بررسی دمای تشکیل کلینوپریوکسن‌ها از دماسنج‌های زیر استفاده شده است:

T (K) = \left[23166+39.28 \ P \right]/13.25
+15.35 Ti+4.50 Fe_{1.55} (Al + Cr _ Na K) + (Lna_{mp})^{2}$

بر اساس این فرمول، میانگین فشار بین 3 تا 7 کیلوبار در نظر گرفته شد. در ماده‌های 1100 تا 1300 درجه سانتی‌گراد را نشان می‌دهد و نتایج حاصل از روش دماسنجی [22] هم‌خوانی نزدیک دارد.

\[F2: -0.0469*SiO_2 – 0.0818*TiO_2 + 0.0212*Al_2O_3 – 0.0041*FeO – 0.1435 *MnO + 0.0029*MgO + 0.0085*CaO – 0.0160*Na_2O \]

پلی‌پای قرار می‌گیرند که نشانگر قابل توجهی نمونه‌های پیروکسن است (شکل 7).

\[F2: -0.0469*SiO_2 – 0.0818*TiO_2 + 0.0212*Al_2O_3 – 0.0041*FeO – 0.1435 *MnO + 0.0029*MgO + 0.0085*CaO – 0.0160*Na_2O \]

برای بررسی دمای تشکیل کلینوپریوکسن‌ها از دماسنج‌های زیر استفاده شده است:

\[T (K) = \left[23166+39.28 \ P \right]/13.25 +15.35 Ti+4.50 Fe_{1.55} (Al + Cr _ Na K) + (Lna_{mp})^{2} \]

بر اساس این فرمول، میانگین فشار بین 3 تا 7 کیلوبار در نظر گرفته شد. در ماده‌های 1100 تا 1300 درجه سانتی‌گراد را نشان می‌دهد و نتایج حاصل از روش دماسنجی [22] هم‌خوانی نزدیک دارد.

\[F2: -0.0469*SiO_2 – 0.0818*TiO_2 + 0.0212*Al_2O_3 – 0.0041*FeO – 0.1435 *MnO + 0.0029*MgO + 0.0085*CaO – 0.0160*Na_2O \]

پلی‌پای قرار می‌گیرند که نشانگر قابل توجهی نمونه‌های پیروکسن است (شکل 7).

\[F2: -0.0469*SiO_2 – 0.0818*TiO_2 + 0.0212*Al_2O_3 – 0.0041*FeO – 0.1435 *MnO + 0.0029*MgO + 0.0085*CaO – 0.0160*Na_2O \]
زمین‌های فشارسنجی کلینیپروکسین:
برای تعیین عمق محیط مانگانی از Al فراورده‌ای استفاده می‌شود. توزیع آلومینیوم در موقعیت‌های چهاروجهی و هشت‌وجهی کلینیپروکسین‌ها معیار مناسبی برای برآورد مقدار Al می‌باشد. میزان فشار حاکم بر محیط تبلور با استفاده از AlIV در مقابل AlVI [32] تفاوت تشکیل در فشار های متوسط با کم است. ب. (شکل [31] توزیع آلومینیوم (نسبت AlIV به AlVI) آب در مانگان تبلور کمتر از [10] و فشار 5 کیلوبار است. ت) تعیین فشار کلینیپروکسین با استفاده از روش [39]

میزان آب موجود در محیط تبلور کلینیپروکسین کاهش می‌یابد که برابر اساس نموداری را برای تعیین فشار و میزان آب می‌باشد. ترکیب کند که بر اساس این نمودار میزان آب مانگان تشکیل دهنده‌های هیاهوی تبلور کریستالی از 10 و فشار 5 کیلوبار را بین می‌گذارد (شکل 8 ب). در ادامه برای فشارسنجی کلینیپروکسین‌ها از نمودار [32] استفاده کرده که با استفاده از فشار T و XPT YPT اثر کننده که بر محیط تبلور کلینیپروکسین در توده‌های نفوذی ورچه بین 3 نا 7 کیلوبار برآورد شده است (شکل 8 ت).

برداشت
بررسی‌های صحرایی این پژوهش نشان می‌دهد، تولید کلینیپروکسین به صورت بیرونی در های کوچک و بزرگ‌تر با طیف ترکیبی از گرابرو تا مونوگرابرو با ترکیب کانی‌شناسی بیشتر بلزبوکلا و