همخوانی دماسنجی ماکل دگرگر دیگرگر کلیست در سنگهای آهکی و زمین-دماسنجی
کلریت‌های توده‌ای گابروپی سرکوه

زینب سخایی*، علی‌رضا دادولیان، ناهید شبانیان

دانشکده منابع طبیعی و علوم زمینی، دانشگاه شهید کریمی
(دریافت مقاله: 8/5، نشانه نهایی: 5/5)

چکیده: منطقه‌ی سرکوه در شهرستان خمین و در یک بندر تین منطقه‌ی زمین‌سختی (سنگهای آهکی) قرار گرفته است. این منطقه‌ی شامل اینوگهای منطقه‌ی سرگچن آهکی‌های رسوبی و آذرین از جمله سنگهای آهکی تجدید نمک‌های سیلیسی و گابروها (کارپی‌کیلی) است. کلیست‌های اصلی کارپی‌کیلی پلاژیورکان، کلیپوریکس و گود بوده و کلیست‌های برونیت، آمپیتوبی، کوارتز، آبنام و زیرکن به عنوان کانی فرعی در سنگ‌های کلیست‌های تجدید نمک‌های سیلیسی و گابروها حضور داشته‌اند.

در این مقاله با استفاده از کلریت‌های توده‌ای گابروپی سرکوه در سنگ‌های کلیست‌های تجدید نمک‌های سیلیسی و گابروها، رساله‌ی جدیدی از نظر شیمی‌الیه کلریت‌های توده‌ای گابروپی سرکوه را به دنبال داده است.

واژه‌های کلیدی: منطقه‌ی سرکوه، دماسنجی، کلریت‌های توده‌ای گابروپی سرکوه

مقدمه

یکی از اهداف علم سنگشناسی دماسنجی به طور آن سنگهای آهکی و دگرگر تشکیل می‌شوند و یا نگهداری شکل می‌دهند. روشهای مختلفی برای تعیین دامنه‌ی عمق و شاخه برای این روش‌ها استفاده از مکانیک‌دان‌های (گردگر) در بلوهای کلریت‌های توده‌ای گابروپی سرکوه، رساله‌ی جدیدی از نظر شیمی‌الیه کلریت‌های توده‌ای گابروپی سرکوه را به دنبال داده است.

1. فلزهای نوین تئوری و جایگزین بافت کلریت در مکان‌های مجاری معدن دیگرگر

2. بررسی مکان‌های دیگرگر در سنگ‌های کلریت‌های توده‌ای گابروپی سرکوه

3. تحقیق در مرجون‌های توده‌ای گابروپی سرکوه

4. مطالعه نظریه پایداری گونه‌های کلریت در مکان‌های مجاری معدن دیگرگر

5. بررسی مکان‌های دیگرگر در سنگ‌های کلریت‌های توده‌ای گابروپی سرکوه

6. بررسی مکان‌های دیگرگر در سنگ‌های کلریت‌های توده‌ای گابروپی سرکوه

7. بررسی مکان‌های دیگرگر در سنگ‌های کلریت‌های توده‌ای گابروپی سرکوه

8. بررسی مکان‌های دیگرگر در سنگ‌های کلریت‌های توده‌ای گابروپی سرکوه

9. بررسی مکان‌های دیگرگر در سنگ‌های کلریت‌های توده‌ای گابروپی سرکوه

10. بررسی مکان‌های دیگرگر در سنگ‌های کلریت‌های توده‌ای گابروپی سرکوه

11. بررسی مکان‌های دیگرگر در سنگ‌های کلریت‌های توده‌ای گابروپی سرکوه

12. بررسی مکان‌های دیگرگر در سنگ‌های کلریت‌های توده‌ای گابروپی سرکوه

13. بررسی مکان‌های دیگرگر در سنگ‌های کلریت‌های توده‌ای گابروپی سرکوه

14. بررسی مکان‌های دیگرگر در سنگ‌های کلریت‌های توده‌ای گابروپی سرکوه

15. بررسی مکان‌های دیگرگر در سنگ‌های کلریت‌های توده‌ای گابروپی سرکوه

*به‌وسیله مسئول، تلفن: 911348472344، نامبر: 3842222222222، پست الکترونیکی: zeynab.sakhaei@gmail.com
صوت کاری اکالی (کاری اکالی) مشخص کردن‌دارند [۲۴]. در کاری اکالی، دسته‌گرده خمین را قلیایی معرفی کرده است. روی این دسته‌گرده از نظر دگرگونی و دگرگشایی برجهای پایین اثر کرده است [۲۴] و این دسته‌گرده هم‌زیستی دریافت کرده است. این دسته‌گرده در تهیه را به خنده خصوصی سنگ‌های آهکی که روی این دسته‌گرده قرار گرفته آشوده نشده است. در این مقاله سعی شده است تا از دسته‌گرده‌ای در دریافت سنگ‌های آهکی که روی دسته‌گرده کربونیت سنگ‌های مه و تخصصی تهیه کنند. ساختمان این ابزار بر اساس اسکیم‌های سنگ‌های مختلف می‌باشد. برای رنگ‌دهی‌های مورد نظر کربونیت مه، قابلیت، شفافیت و کیفیت مصرف کننده ندارد [۲۴]. ساختار این ابزار از اسکیم‌های سنگ‌های مختلف می‌باشد. برای رنگ‌دهی‌های مورد نظر کربونیت مه، قابلیت، شفافیت و کیفیت مصرف کننده ندارد [۲۴].

عکس، داویدان، شیبانی

مجله بلوارشناسی و کاپیشناسی ایران

۲۲۲

ذگرسانی به کاری‌های باغ مشهد. این هزار اثر گان‌شیرین کاتی‌های که از قبل وجود می‌ودند و در مترو سطحی از محلول گرمای‌شدن می‌شوند [۲۴-۲۵]. کربونیت یکی از شاخه‌های باغ به در کاری‌های مصرف کننده ندارد [۲۴]. ساختار این ابزار از اسکیم‌های سنگ‌های مختلف می‌باشد. برای رنگ‌دهی‌های مورد نظر کربونیت مه، قابلیت، شفافیت و کیفیت مصرف کننده ندارد [۲۴].

فرمول کربنولی‌های هالورت: به‌صورت: \(R_u^{2-} \ R_Y^{3+} \ R_p^{3+} \) VI (Si 4+ Al) IV O 10-W (OH) 6-W U + Y + Z = 6 Z = (Y-W/X/2)

۱. از نظر تقسیمات زمین‌شناسی ایران، منطقه‌هایی کربنیت می‌تواند داشته باشد. این دسته‌گرده‌های دگرگوش به خشکی پایین‌ترین سنگ‌های مصرف کرده است. در این دسته‌گرده سه‌گوش کربنیت شفاف و خنده صنعتی و در درمان‌های بیماری‌های مختلف، بستگی به کربنیت مه دارد [۲۴]. ساختار این ابزار از اسکیم‌های سنگ‌های مختلف می‌باشد. برای رنگ‌دهی‌های مورد نظر کربونیت مه، قابلیت، شفافیت و کیفیت مصرف کننده ندارد [۲۴].

Cr, Ti, Ni, Mn, V, Cu, Fe کربنیت دارای ترکیب‌هایی از اکساید Cu, Li کربنیت دارای ترکیب‌هایی از اکساید Cu, Li
جدول 1: تشکیل دهنده‌های کلریت و واکنش‌های تبدیلی [13, 22, 23]های

<table>
<thead>
<tr>
<th>اکسید</th>
<th>ترکیب مولکولی</th>
<th>واکنش</th>
<th>برنامه‌های تعویضی</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>Mg۶Si۴O۱۰(OH)۸</td>
<td>۱</td>
<td>Al۲Si۱Mg۱</td>
</tr>
<tr>
<td>MgO</td>
<td>Mg۶Al۵SiO۱۰(OH)۸</td>
<td>۲</td>
<td>Fe۲Al۱</td>
</tr>
<tr>
<td>FeO</td>
<td>Fe۳Al۱Si۴O۱۰(OH)۸</td>
<td>۳</td>
<td>Fe۲Al۱</td>
</tr>
<tr>
<td>Fe۲O۳</td>
<td>Fe۳Fe۲Si۴O۱۰(OH)۸</td>
<td>۴</td>
<td>Fe۲Al۱</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>Al۲Fe۳SiO۱۰(OH)۸</td>
<td>۵</td>
<td>Al۲(Fe۳۳)۳</td>
</tr>
<tr>
<td>H۲O</td>
<td>Fe۲Fe۲Al۵SiO۱۰(OH)۸</td>
<td>۶</td>
<td>Fe۲O۲Fe۲,OH۱</td>
</tr>
</tbody>
</table>

![دیاگرام](https://example.com/image.png)

شکل 1: نقشه زمین‌شناسی ساده شده از منطقه سرکوبه بر پایه نقشه زمین‌شناسی 1:100000 محلات [۱۵۳].

لیست نشان‌دهنده‌ها
- Recent river deposits
- Young alluvial terrace
- Old alluvial terrace
- Alkali gabbra
- Shale & sandstone
- Sandy limestone
- Fault
- town & village
- First class road
- Second class road
- Motorable track
- Study area

نشان‌دهنده گروه‌ها
- Gravel fan

Legend

[Example diagram and legend image from the original document]
های آهکی در دامنه تپه‌ها مشاهده کرد (شکل ۲ پ). روی بررسی
با بررسی‌های صحرایی و جمع‌آوری نمونه‌های لازم، از آن‌ها
مقطع نازک - صقلی نه میند و بررسی‌های سنگ نگاری
OLYMPUS – BX20 - با استفاده از میکروسکوپ مدل
صورت گرفت. سپس مقاطع تهیه شده پس از پوشش با گیاه
با یک رایزپادارنده الکترونی SX50 Cameca مدل آنالیز
نقاط‌های سنگی تعدادی از کانی‌ها برای تعبیر ترکیبی و محاسبه-
ی فرمول ساختاری‌شان، در گروه زمین‌شناسی دانشگاه
اولاهسنیسی آمریکا در شرایط ۲۰ کیلو ولت، جریان ۲۰ نانو
آب و ۱۲۰ تاپه زمان شمارش با انتخاب نقاط ۲ میکرومتری
انجام گرفتند. دقت تجزیه نقاط‌های برای یک صدم درصد
برای اکسیدهای عناصر اصلی بوده است. آنالیز کانی‌ها با
مورد بررسی قرار گرفتند و فرمول‌ساختاری کانی-
Excel افزار بررسی قرار گرفتند و فرآیند ساختاری کانی-
ها محاسبه شد و محاسبه‌ی مقادیر Fe بر مبنای ملاحظات
عنصرسنجی با [۲۷] انجام شد.

در این نتیجه‌ها توده‌ی نفوذی به‌وسیله رسوپ‌های آبزی-پیشی شده است. درحالی‌که در مشاهده‌های روی
دامنه تپه‌ها به طور منطقه‌ای جای خطرلاس تپه‌ها لایه‌های
نارنجی از سنگ آهک و گاهی کاورتیت دیده می‌شوند. گاهی
هم سنگ‌های آهک و پاک کاورتیت به‌وسیله مالم‌های
بازی سبب تغییرات در رنگ (روشن شدن) سنگ‌های توده‌ی
نفوذی می‌شود و ظاهر سنگ‌ها از ملامکرات به سمت موزکرات
تغییر می‌کند (شکل ۲ اف). با توجه به این که سنگ‌های
آهکی و لایه کاورتیت تحت تأثیر ماکمای توده‌ی نفوذی
قرار گرفته‌اند، بنابراین سنگ‌های کاورتیت جوانتر بوده و با توجه
به نقشه‌ی زمین‌شناسی چهارگوش محلات، سن آن‌ها پس از
کراناس بالایی و احتمالاً لوسن است [۲۴]. ناحیه سرکوبه
پیشتر حالت ماهوری داشته و معمولاً این توده‌های نفوذی
گاهی پوشش مسکن بر را تشکیل می‌دهند. با توجه به این-
که آب و هوای منطقه نیمه‌خشک است در آخر تخریب
فیزیکی
ناشی از انجماد علوا بر فرسایش پوسته پیازی (شکل ۲ ب)
و افزایش سنگ‌های Gabroپی را می‌توان علوا بر واریزی سنگ

شکل ۲ اف: نمایش تغییر رنگ در سنگ‌ها، ب: فرسایش پوسته پیازی، ب: نمایش واریزه‌های سنگ‌های Gabroپی و آهکی.
بررسی‌های سنگ نگاری سنگ‌های کاربری
سنگ‌های توده‌ای نفوذی سرکوبه اصولاً بابت دانه‌ای، ناهم از نوع بافت‌های تداخلی میان دانه‌ای (بافت‌های تداخلی) ناشی می‌دهد. کاتی شناسی این سنگ‌ها نسبتاً ساده بوده و شامل:
پلازیوکلاز: از تشکیل‌دهنده‌ای اصلی سنگ است که در حداکثر ۵۰ درصد مقاطع را تشکیل داده، که اندکی دانه‌ها بالایی متوسط بوده و نیمه‌شکل دار تا بی‌شکل و دارای مایل پی‌سنتنیک و آلیپتی هستند، که گاهی در نقاط میانی و آتاری از تجزیه سوسوریتی (نبشی به مجموعه‌ای از کلرید، کلسیت و اپیدوئر) را نشان می‌دهند (شکل ۳، الف).
کلرید‌پارس: متوسط تا درشت بی‌پوده و بهصورت بی‌پوده، نیمه‌شکل دار تا شکل دار بوده، مقاطع عرضی دو دسته رخ می‌دهد به‌هنجاره سنگ‌های کاربری در حدود ۴۰ درصد مقاطع مربوط به این کلرید و دارای آتار تجزیه‌شده‌گی از نوع اوتاریتیشن و کم‌شکل شدن است (شکل ۲، الف).
کلرید‌پارس: به نشانه بان‌بازی کلرید‌های کاربری از نوع EDX کاتی‌های کریک از نوع اکلیمینیت‌هستند که از متوسط بی‌پوده تا بی‌پوده و به‌هم‌بینی فرم بی‌پوده تا نیمه‌شکل دار و گاهی آمیبی شکل هستند و غالباً در

شکل ۲

شکل ۳
کلرید (عکس اختصاصی برگرفته از Chl, Cal: کلرید و Cal: کلرید).
کلسیت: بلورهای کلسیت بخش اعظم سنگ را تشکیل می‌نمایند. یک مدل نیمه‌مستقیم دارد که به طور دودی و به صورت نیمه‌مستقیم بیشتر دیده می‌شود و دارای رخ کامل مستقیم (شکل ۳) است. رخ کامل مستقیم در این سنگ‌ها بلوری پوشانده شده‌است. (SPO: shape preferred orientation) ترجیحی است که امروز طبیعی بوده و دال بر وجود نشان و غیرمستقیم بیشتر است.

بیان

ماکل‌هایی در شکل‌های دگرگو در بلورهای کلسیت به صورت گسترده‌ای برفی تشخیص تاریخ دگرگوکو در دی‌سیم‌های استفاده می‌شود [۲۴]. ریخت‌شناسی ماکل بلور کلسیت در سنگ‌های آهنکی منطقه سرکوبی غالباً به‌طور انتها بیدا گردند و ساز انتهای سه (نوع III) خاطر می‌گردد و ساز انتهای چهار (نوش‌بندی) دارند. نشان‌های ماکل در این دی‌سیم‌ها دارند. بالایین دی‌سیم کلسیت اکثر از دما از ۲۵۰°C تا ۳۵۰°C و بیش از ۴۰۰°C است. [۴۰]

شکل ۴: نمودار هندسی ماکل‌هایی دگرگوک در کلسیت و گسترش آن‌ها در دما مقاوم [۴۰].

شکل ۵: نمودار از رشد سنگ‌های ماکل‌هایی دگرگوک در درجه حرارت [۴۰].

Type I <200°C
Type II 200°C-1500°C
Type III 1500°C-300°C
Type IV >300°C

Increasing temperature
کلریت در سنگ‌های آذرین اساساً از دگرسانی پیروکسن، آمفیبول و بیوتیت ایجاد می‌شود، بنابراین کلریت به کاتیون‌های آذرین اولیه واسطه است. برای مثال کلریت‌های غنی از آهن (هیمالین، ترونیت) راه‌های دافنیت) معمولاً جانشین کاتیون‌های فرومینیز غنی از آهن می‌شوند. علت رنگ سبز پسیاری از سنگ‌های آذرین وجود کلریت حاصل از دگرسانی سیلیکات‌های مینزین است (۴۱). کلریت می‌تواند بصورت بک‌کاتی، جانشین کاتین‌های قبل موجود مانند بیوتیت شود که ترکیب شیمیایی آن از طریق واکنش احاطه کتنه در دیگر سنگ‌ها. کرتیز پیروکسنیک قبلاً از سنگ‌های آذرین ایجاد شود [۴۲-۴۴]. امروزه نتایج است که ترکیب شیمیایی کلریت به شرایطی از تغییر دما و فشار سطحی و با ترکیب گروه سه-میکرومتری در زمینه‌های مختلف زمین‌شناسی استفاده شود [۵۸-۶۰].

<table>
<thead>
<tr>
<th>جدول ۲: تفسیر‌بندی کلریت‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorite Group Mineral</td>
</tr>
<tr>
<td>Sheridanite</td>
</tr>
<tr>
<td>Clinohlore</td>
</tr>
<tr>
<td>Penninite</td>
</tr>
<tr>
<td>Ripidolite</td>
</tr>
<tr>
<td>Brunsvigite</td>
</tr>
<tr>
<td>Diabanite</td>
</tr>
<tr>
<td>Thuringite</td>
</tr>
<tr>
<td>Chamosite</td>
</tr>
</tbody>
</table>

پیشنهادات، تفسیر و تحلیل همکاری دانشمندی، گروه‌های مینزین (ریپیدولیت، برنسوگیت، دیابانیت، ثورنیت، چاموزیت)
جدول 3 تناها آنتی تنش سی از کلاک کلریت.

<table>
<thead>
<tr>
<th>Label</th>
<th>D1-Chl1</th>
<th>D1-Chl2</th>
<th>D1-Chl3</th>
<th>D1-Chl4</th>
<th>D1-Chl5</th>
<th>D1-Chl6</th>
<th>D1-Chl7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>2.32</td>
<td>2.54</td>
<td>2.95</td>
<td>2.23</td>
<td>2.26</td>
<td>2.75</td>
<td>2.77</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.63</td>
<td>0.71</td>
<td>0.72</td>
<td>0.63</td>
<td>0.75</td>
<td>0.75</td>
<td>0.76</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3.93</td>
<td>3.75</td>
<td>3.81</td>
<td>3.85</td>
<td>3.92</td>
<td>3.92</td>
<td>3.96</td>
</tr>
<tr>
<td>CaO</td>
<td>10.9</td>
<td>11.4</td>
<td>11.4</td>
<td>11.9</td>
<td>12.1</td>
<td>12.4</td>
<td>12.4</td>
</tr>
<tr>
<td>MgO</td>
<td>1.85</td>
<td>1.88</td>
<td>1.84</td>
<td>1.91</td>
<td>1.93</td>
<td>1.99</td>
<td>1.99</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.64</td>
<td>1.64</td>
<td>1.64</td>
<td>1.57</td>
<td>1.56</td>
<td>1.51</td>
<td>1.55</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.16</td>
<td>1.17</td>
<td>1.17</td>
<td>1.17</td>
<td>1.17</td>
<td>1.17</td>
<td>1.17</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
</tbody>
</table>

محاسبه براساس 12 آنکربین.

<table>
<thead>
<tr>
<th>Ion</th>
<th>D1-Chl1</th>
<th>D1-Chl2</th>
<th>D1-Chl3</th>
<th>D1-Chl4</th>
<th>D1-Chl5</th>
<th>D1-Chl6</th>
<th>D1-Chl7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>2.38</td>
<td>2.63</td>
<td>2.66</td>
<td>2.69</td>
<td>2.66</td>
<td>2.66</td>
<td>2.68</td>
</tr>
<tr>
<td>Ti</td>
<td>0.48</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
</tr>
<tr>
<td>Al</td>
<td>0.49</td>
<td>0.32</td>
<td>0.31</td>
<td>0.29</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>Cr</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Fe</td>
<td>0.14</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Mn</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Mg</td>
<td>1.19</td>
<td>1.25</td>
<td>1.26</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>Ca</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Na</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>K</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>sum</td>
<td>4.98</td>
<td>4.94</td>
<td>4.93</td>
<td>4.98</td>
<td>4.98</td>
<td>4.98</td>
<td>4.98</td>
</tr>
<tr>
<td>Al⁴⁺</td>
<td>0.22</td>
<td>0.27</td>
<td>0.27</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Al⁶⁺</td>
<td>0.18</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Mg#</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
</tr>
</tbody>
</table>

در فرمول ساختاری کلریت، بین کانیون Al⁴⁺، با کانیون Al⁵⁺، با کانیون Mg³⁺، با کانیون Fe²⁺ از یک طرف و بین کانیون Fe³⁺ با کانیون Si⁴⁺ از صدایی سطح گستردگی رخ می‌دهد. به گونه‌ای که کانیون Si⁴⁺ می‌تواند در موقوف چاه‌روشی و موقوف هست‌چه ی وارد شود. در جایگاه پتروچه‌ال Al جهت پر بردن Si می‌شود. نسبت کانیون Al⁴⁺ بین 1.37 و مقدار Al⁵⁺ بین 1.55 تا 1.67 تغییر می‌کند. براساس نتایج ریزی‌دیاژ کلریت ارائه شده در جدول 3 کلریت‌های منطقه‌بر سید و بنابر نمودار سی (ف) Fe/Fe²⁺ + Mg + Mn در مقابل Si در جایگاه ها در گسترهٔ پتی‌نت‌ها قرار گرفته (شکل 7). از کلریت در سنگ‌های گردن آدنی می‌توان برای تشخیص رخداده‌گری و سنگ‌های شناخت تاریخ‌گری سنگ‌های استفاده کرد.[20] از آنجا که بین ترکیب کلریت و مقدار تشکیل آن ارتباط وجود دارد، لذا از کلریت بهعنوان یک زمین‌داسیس استفاده می‌شود.

[۹] برای تعیین دمای تشکیل کلریت ارائه شده است.

T(°C) = 212.31Al⁴⁺ + 17.54

با استفاده از عبارت ریاضی فوق و مقادیر ارائه شده در جدول ۴، شناخت کلریت در سنگ‌های گردونه‌سکویی براساس تغییرات در محتوای Al⁴⁺، تغییرات قابل اطمینانی از دما را بین جدا و در مدت حیات. از آنجایی که با استحکام اندیشه‌اندازه‌گیری شده، منابع و خطا برای ۲۰۰۱۲ درجه سانتی‌گراد خواهد بود. با افزایش دمای تشکیل کلریت، میزان افزایش می‌یابد (شکل ۸). این ارتباط مستقیم میان Al⁴⁺ و میزان این هست‌چه وجود دارد. همچنین ارتباط مستقیم و رابطه مثبت بین محتوای آلی و منزه‌گری کلریت با دما و نیز میزان مقدار این عناصر و محیط زیست ساخت و ترکیب محلول وجود دارد.[۹].
شکل 7 نمودار Si/Np نسبت به Fe/Fe+Mg+Mn.[۱۰۶]

جدول ۴ حرارت سنگی کلریت در سنگ‌های کاربوخ سرکوبه به اساس روش [۹].

<table>
<thead>
<tr>
<th>T(°C)</th>
<th>۲۱۲.۳۱AlIV +۱۷.۵۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۷۹۷</td>
<td>۳۰۹۴</td>
</tr>
<tr>
<td>۳۰۲۴</td>
<td>۳۰۶۹</td>
</tr>
<tr>
<td>۳۰۹۴</td>
<td>۳۱۶۷</td>
</tr>
<tr>
<td>۳۱۶۷</td>
<td>۳۲۱۷</td>
</tr>
<tr>
<td>۳۲۱۷</td>
<td>۳۲۷۸</td>
</tr>
</tbody>
</table>

شکل ۸ نمودار نمایش مدا برای AlIV در برای AlFe(Fe+Mg) کلریت + کوارتز + کوارتز در دمای حدود ۲۰۰۰۰ تا ۲۸۰۰ و فشار ۱ تا ۴ کیلونر هیدریم با وجود می‌آید [۴۶]. با توجه به تشکیل امپیبول در کنار بلورهای پرهنتی - پوهیلیات و کلریت، نشان می‌دهد که این سنگ‌ها در مرحله گذر از زیر رخ‌های سیستم به شیست سنگ قرار گرفته‌اند [۴۳]. پرهنتی در فشار کمتر از ۳ کیلونر و پوهیلیات در فشار کمتر از ۴ کیلونر و در دمای حدود ۲۰۰۰ تا ۲۸۰۰ تا ۳۰۰ تا ۳۰۰۰ درجه سانتی‌گراد و در مراحل اندامی گذر و ورود به رخ‌های شیست سنگ (مراحل افزایش درگوگونی) هستند [۴۴].
Brashard in the Southern Iran, Si r j a n metamorphic belt, southern IRAN “, Equilibria and geothermometry in the Sana an daj-43(1) (2005) 311-325.

Moazen M., "Chlorite-chloritoid-garnet

Lee S. S., Guggenheim S., Dyar M. D., Guidotti C. V., "Chemical composition, statistical analysis of the unit cell, and electrostatic modeling of the structure of Al-saturated chlorite from

[19] Lee S. S., Guggenheim S., Dyar M. D., Guidotti C. V., "Chemical composition, statistical analysis of the unit cell, and electrostatic modeling of the structure of Al-saturated chlorite from...

[27] [اکبری م, نصرافشامی, ع. اسلامی, مر., هیایدی, پ. گهرگنی, ع. "مشخصه‌سنجی جهارگوش محلات با میاسیت\(\ldots\)\), سازمان زمین شناسی و اکتشافات معیینی کشور (1994) 173-182.