همخوانی دماسنجی ماکل دگرگون کلیسیت در سنگهای آهکی و زمین-دماسنجی 
کلریت های توده‌گویی گابروپیسی سربوکه

زینب سخایی، علمی دانشیه، ناهید شبانیان

دانشکده مطالعات طبیعی و علم زمین، دانشگاه شهید کریمی

چکیده: منطقه سربوکه در شهرستان خمین و در بیشترین منطقه‌های زمین‌ساخته (سنندج - سیرجان) قرار گرفته است. این منطقه شامل انواع مختلفی از سنگهای رسوبی و آذرین از جمله سنگهای آهکی تجربه دیده‌باین فاقد سنگ‌های سیلیسی و غاروها (کاپور کابلی) است. سنگ‌های اصلی کاپورها یا پلازی کاپور، کاپور هوشمند و کاپور های بی‌موتیوبیتی، کارترز، آیانیت و زیرکن به عنوان کلیسیت، به علاوه کلریت، پرهانیت و آمینیت نامیده شده‌اند. این کلریت‌ها حاصل از تجزیه هستن دارند. با توجه به فاقد سنگ‌های تشکیل‌دهنده سربوکه، این سنگ‌ها دگرگون در زیر رخ‌های شیستی در ترکیب شیستساز در زیر رخ‌های سربوکه. نتایج بررسی‌های این سنگ‌ها انجام شده، بر روی کلریت، سنگ‌های آهکی تجربه دیده‌باین، ماکل دگرگون کلیسیتی در نوع IV و اسپیت، ماکل دگرگون دیمانیکی توازن دیمانیکی کلریت را که در دمای بالاتر از 234 درجه سانتی‌گراد و حتی بیشتر از 250 درجه سانتی‌گراد تشخیص داده شده است. که با نتایج بدست آمده، با دمای دگرگون کلیسیت در ماکل‌های هستنی همخوانی دارد.

واژه‌های کلیدی: ماکل دگرگونکلیسیت، زمین-دماسنجی، کلریت، سربوکه، خمین-سنندج-سیرجان

مقدمه

یکی از اهداف علم سنگشناسی تعیین دماسنت که طی آن سنگ‌های آهکی و دگرگویی تحلیل می‌شود و با تغییر شکل می‌دهد. روی‌های متفاوتی برای تغییر دمای زمین هستند. یکی از این روش‌ها استفاده از ماکل‌های کلیسیتی (در دربست) در بیشتر سنگ‌های انگلیسی است. بررسی ماکل کلیسیتی از درون مقادیری مشاهده که در مناطق دگرگونکلیسیت است. [14] فاقدی این لایه‌های اسپیت به علت تغییر شکل در دمای زیر 250 درجه سانتی‌گراد تغییر می‌کند و نیز نفیسی همانند تغییر مکان نژادی باید بررسی شود.

بلورهای کلیسیتی غلظت گونه‌گونی ماکلی شدن می‌دهد. ماکل معمولی در حیطه‌های رسوبی، دگرگون های درجه پایین و سنگ‌های زمین-دماسنجی تزویج گونه‌گونی درریخت هستند.

zeynab.sakhaei@gmail.com

*ویژه‌شناسی، تلفن: ۹۱۳۹۸۴۳۲۳۲۲۳۲، تاریخ نمایر: ۸۸۲۴۴۴۴۴۴۴۴۴۴۴، بست‌کنشی: ۹۱۳۹۸۴۳۲۳۲۲۳۲، پست الکترونیکی: zeynab.sakhaei@gmail.com*
درگرانش شده گرمایی یافته می‌شود. این هوا بر اثر جانشینی کاتیون‌های که از فلزات موجود اجرا و با یک به‌طور مستقیم از محلول گرمایش‌شده می‌شود اتفاق می‌افتد. کلریت یکی از شاخص‌های نیروی فاز در میان دو اثری که می‌تواند به عنوان گامی فرآینده در سیاله‌گون و در منطقه‌ای کلریتی موجود باشد [15-20]. فاکتورهایی مثال ترکیب شیمیایی سنس میزان، پارامترهای شاری مانند گریندگی اکسپزیون، فعالیت کاتیون‌های فلزات سولفور، Mg²⁺ غلظت سولفور در pH به‌طور کلی که در ترکیب شیمیایی کلریت نش تنیه کننده دارد [21]. ساختار ایده‌آل این ایالومینولیتیک ایدار بوسیله‌ای لایه‌های منطقه‌ای MG(H₂O)₃، مانند شرکتی مسی سری‌پرستی می‌تواند این (R) را به عنوان گامی منطقه‌ای چهارچوبی مثل یک مدل تارکه‌شده (Mg(SiO₄)(OH))₂ به عنوان لایه‌های 2:1 شناخته است. 

فرمول کربناتهای شیمیایی کلریت به صورت:

\[(\text{R}_\text{U})^{2+} \text{R}_\text{Y}^{3+} \text{Z}^{-1} (\text{Si}_{4-x} \text{Al}_x)_{2+}^{1+} \text{V}^{-1} \text{O}^{10-w} (\text{OH})_{2w} \quad \text{U} + \text{Y} + Z = 6 \quad Z = (Y-W)/2\]

منظره جای خالی ساختاری است. 

موضع‌های هشتوچژی (بالاتون) VI متفاوت از موضوع دچارانسال (بالاتون) IV در فرآیند کلی ساختاری انتقال موضع‌های هشتوچژی نشان دهنده مجموعه کامیون‌ها در موضع‌های چهارچوبی و فوکر این با 

Cr, Ti, Ni, Mn, V, 

معادله بالا نشان دهنده‌های مانند که عموما در مقایسه انگلیسی و در موضوع هشتوچژی Cu, Li کلریت قاری گیرنده را نشان می‌دهد این انحصار به‌طور کلی عناصر با Si, Al, Fe⁺², Fe⁺³, کریستال کلریت مانند Si, Al, Fe⁺², Fe⁺³, 

و به نوع ترکیب‌گذاری کلریت کاسپ می‌کند در Mg جدول 1 نشان دهنده‌های کلریت و واکنش‌های تداخلی [13] 22 نشان دهده داده است. 

بررسی زمین‌شناسی ناحیه سرکوبی واقع در شمال خمیس از گویش زمین‌شناسی تری زمین‌شناسی که توسط [22] انجام پذیرفته است. در نقشه چهارگوش زمین‌شناسی محلات به مقياس 

1:100000 نشان می‌دهد جایلی روسیه سرکوبی را به
جدول 1: تشکیل درده‌های کلریت و واکنش‌های تادالی [12, 22].

<table>
<thead>
<tr>
<th>Oxide Component</th>
<th>Molecular Component</th>
<th>Exchange reaction</th>
<th>Exchange Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SiO₂</td>
<td>Mg₆Si₄O₁₀(OH)₈</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 MgO</td>
<td>Mg₆Al₂Si₃O₁₀(OH)₈</td>
<td>(Si⁴⁺)(Mg₂⁺)⁻→(Al³⁺)⁴⁺</td>
<td>Al₂Si₁Mg₁</td>
</tr>
<tr>
<td>3 FeO</td>
<td>Fe⁺⁺⁺Al₂Si₃O₁₀(OH)₈</td>
<td>(Mg⁺⁺⁺)⁺⁺⁺→(Fe⁺⁺⁺)⁴⁺</td>
<td>MgFe⁺⁺⁺</td>
</tr>
<tr>
<td>4 Fe₂O₃</td>
<td>Fe⁺⁺⁺Fe⁺⁺⁺Si⁺⁺⁺O₁₀(OH)₈</td>
<td>(Al⁺⁺⁺)⁺⁺⁺→(Fe⁺⁺⁺)⁴⁺</td>
<td>Fe⁺⁺⁺Al⁺⁺⁺</td>
</tr>
<tr>
<td>5 Al₂O₃</td>
<td>Al₂⁺⁺⁺SiO₁₀(OH)₈</td>
<td>3(Mg,F₆⁺⁺⁺)⁺⁺⁺→2(Al⁺⁺⁺)⁴⁺</td>
<td>Al₂(Mg,F⁺⁺⁺)₃</td>
</tr>
<tr>
<td>6 H₂O</td>
<td>Fe⁺⁺⁺Fe⁺⁺⁺Al₂Si₃O₁₀(OH)₈</td>
<td>(Fe⁺⁺⁺)⁴⁺⁺⁺2(OH⁻)⁻→(Fe⁺⁺⁺)⁴⁺⁺⁺O⁺⁺⁺(OH⁻)</td>
<td>Fe⁺⁺⁺O⁺⁺⁺Fe⁺⁺⁺,OH⁻</td>
</tr>
</tbody>
</table>

شکل 1: نقشه زمین‌شناسی سادات شده در منطقه سركوبه بر پایه نقشه زمین‌شناسی 1:10000 مخلوط [124].
راه‌های اهمیت در دانه‌ها به‌جای ماهیت در کر (شکل ۲، پ).

روش بررسی

با بررسی‌های جراحی و جمع‌آوری نمونه‌های لازم، از آن‌ها مقاطع نازک - صافی - نهش شدن و بررسی‌های سنج نگاری OLYMPUS - BX20 با استفاده از میکروسکوپ مدل صورت گرفت. سپس مقاطع نهش شده پس از پوشش با کربن SX50 مدل Cameca با یک رزپی درازنده الکترونی نقطه‌ای شدید تعدادی از کلی‌ها برای تعیین ترکیب و محاسبه-

ی ساختار شمانش، در گروه زمین‌شناسی دانشگاه اولیه‌سنتی امریکا در شرایط ۲۰۰ کیلو ولت، جریان ۲۰ نانو آمی و ۱۰ نانو ثانیه شماری با انتخاب نقاط ۲ میکرومتری انجام گرفتند. دقت تجزیه نقاطی برای یک صدم درصد برای اکسیدهای عناصر اصلی بوده است. آنالیز کلیدی با نرم‌افزار Cameo و نرم‌افزار مورد بررسی قرار گرفتند و فرمول ساختاری کلی- Excel افزایش بررسی قرار گرفتند و فرمول ساختاری کلی- Excel افزایش بررسی قرار گرفتند و فرمول ساختاری کلی- Excel افزایش بررسی قرار گرفتند و فرمول ساختاری کلی- Excel

ارزیابی سنج‌های گالری‌بی را می‌توان علاوه بر واریزی سنگ‌های گالری‌بی و آهکی.

شکل ۲: افزایش تغییر رنگ در سنگ‌ها، پ: فرایشی پوسته پیازی، ب: نماش واریزی سنگ‌های گالری‌بی و آهکی.
بررسی‌های سنگ نگاری سنگ‌های کاری‌موکی
سنگ‌های توده‌ای نهفته سرکوبه اصولاً به فاصله‌ای نهایی بعد از نوع باب‌های تداخلی میان دانه‌ای (بافت افتابیک تا ساب افتابیک) نشان می‌دهند. کاتی نشان‌های این سنگ‌ها نسبتاً ساده بوده و شامل پلاژیوکلازا: از تشکیل دهنده‌های اصلی سنگ است که در حدود 50 درصد مقاطع را تشکیل می‌دهد. که اندامه‌های غالبی متوسط بوده و به شکل‌های دارا نیز مکاتب عامل پلی‌ستینیک و آلبینی‌هستن در هر نوع گسترش‌های و آتری از تجزیه‌سوسوریتی (تبدیل به مجموعه‌ای از کلریت، کلریت و اپیدوت) را نشان می‌دهد (شکل 3، ال‌ف).
کلیوپروکسن: متوسط تا درشت بلو توده و به صورت به شکل‌های نیز حاضر بی‌پلاژیوکلازاهاست. در مقاطع پی‌باید برگر و به حال رشته‌ای دیده شده و کلیوپلاژ خوب دارد. برگستگی تقریباً با و دو شکل‌های شدیدی دارد.
پروپیدیت: این کاتی نیز حاصل تجزیه پلاژیوکلازاهاست و دارای پلی‌پروکسنِ سبز کمرنگ تا زرد و خاموشی مایل است. برگستگی آن متوسط بوده و از نظر ماهیت پی‌باید رشته‌ای و شعاعی در مقاطع دیده شده است.
سنگ‌های سنگ‌نگاری آمیکی
بافت این سنگ‌ها گرانولاسیتیک هم‌بعد و پدودژه‌است. Interlobat

شکل 2: کاتی پلاژیوکلازا و کلیوپروکس‌ن. ب، کاتی ایلمنیت با حاشیه‌های اسفنج، ب: کاتی کلریت با رنگ تداخلی آبی‌خونه، ت: کاتی
کلریت، تمامی تصاویر در Pl، پلاژیوکلازا، Cpx، XPL، ایلمنیت، Pl، Cpx، ایلمنیت، Chl، کلریت و Cal. Chl کلریت (عکس‌های اختصاصی بطوریه‌زی از [23]).
کلیسیت: بلورهای کلیسیت باعث عظیم سنگ را تشکیل می‌دهند و به‌صورت نیمه‌شبکه‌ای به شکل دیده می‌شوند و دارای رخ کامل هستند (شکل ۳). در این سنگ‌ها بلور shape preferred (شکل ۳) ترجیحی است که امروز طبیعی بوده و دال بر وجود نش و تغییر‌شکل پلاستیک است.

بحث
ماکل‌هایی از دگرگشکلی در بلورهای کلیسیت به صورت گسترده‌ای برای تشخیص تاریخ دگرگشکلی استفاده می‌شود [۳۴]. ریخت-شناسی ماکل کلیسیت با دمای دگرگشکل کلیسیت در محدوده ۲۰۰۰-۳۰۰۰ °C دارای شدید همخوانی دارد [۳۷-۳۸]. این بدان معناست که تعداد و اندازه ماکل در نتیجه‌ی تشیع اعمال شده و شرایط دگرگشکلی می‌تواند اطلاعی از رابطه‌ی با دمای دگرگشکلی در اختیار ما قرار دهد. ریخت-شناسی و پهنای ماکل با دما و دگرگشکلی در بلورهای درشت دانه کلیسیت همخوان است.

کارهای صورت گرفته توسط [۳۷-۳۸] نشان داده که

شکل ۴ نمودار هندسی ماکل‌های دگرگشکل در کلیسیت و گسترش آن‌ها در دمای متناوب [۳۴] 

شکل ۵ طرح نموداری از ردبندی ماکل‌های دگرگشکل براساس [۴۲].

شکل ۶ ماکل‌هایی با پهنای ماکل رابطه مستقیم با دما دارد به طوری که:

۱) ماکل‌های با پهنای باریک (خطوط ماکل مستقیم) کمتر از ۱ μm دمای ۲۰۰-۱۷۰۰ °C 
۲) ماکل‌های با پهنای ضخیم (کمی لنزی) بیشتر از ۵ μm دمای ۳۰۰-۲۰۰۰ °C 
۳) ماکل با پهنای منحنی که ممکن است حتی دو ماکل باشد و همراه با جای‌گیری دمای بالای ۲۰۰۰ °C در نشان می‌دهند.

رنگ‌های با پهنای ماکل ضخیم نامنظم همراه با مهاجرت مرز دانه دمای بالای ۲۵۰-۳۵۰ °C را نشان می‌دهند.

درک و توصیف ماکل منحنی در شکل‌های زیر مشاهده می‌شود (شکل ۴ و ۶):

این ریخت‌شناسی ماکل بلور کلیسیت در سنگ‌های آهکی منطقه سرکوبه غربی بیشتر از نوع سه (نوع III: خطوط ماکل انحنا بیشتری در سنگ‌های هستند) و نوع جهانی (نوازه ضخامت یکسان) می‌باشد. امکان بهبود و یا تغییر در شکل ماکل همیشه ممکن است.

 financially supported by [۳۷-۳۸].
کلریت در سنگ‌های آذرین اساساً از دگرگونی پیروسکن، أمفیبول و بیوتیت ایجاد می‌شود. بنابراین ترکیب کلریت به کلاه‌های آذرین اولیه ویژه است. برای مثال کلریت‌های غنی از آهن (همانند ترونگیت، دلیت، دافینیت) معمولاً جانشین کالی‌های فرومینزین غنی از آهن می‌شوند. علت رنگ سبز بیسیاری از سنگ‌های آذرین وجود کلریت حاصل از دگرگونی سیلیکات‌های منیزین است [۱۴۱]. کلریت می‌تواند بطور کپ کالی، جانشین کالی‌های قبل موجود مانند بیوتیت شود که ترکیب شیمیایی آن از طریق واکنش انحلال-تنشینی دوباره کنترل می‌شود. از طرف دیگر کلریت به‌طور مستقیم می‌تواند به عنوان شکل جدیدی در دگرگونی‌ها و یا فاره‌های دیاتنتیک ایجاد شود [۴۴۲]. امروزه نتایج است. که ترکیب شیمیایی کلریت به شرایطی از تشکیل دمای و فشار بسیگن دارد و می‌تواند برای ایجاد ترمودیمتری در زمینه‌های مختلف زمین‌شناسی استفاده شود [۴۴۲-۵۸].

جدول ۲ توصیف‌بندی کلریت‌ها [۱۰۴]

<table>
<thead>
<tr>
<th>Chlorite Group</th>
<th>Mineral</th>
<th>Fe(Fe+Mg+Mn)</th>
<th>Si(apfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheridanite</td>
<td></td>
<td>۲۰۰-۵۰۰</td>
<td>۲۰۰-۲۱۰</td>
</tr>
<tr>
<td>Clinohlore</td>
<td></td>
<td>۱۵۰-۲۰۰</td>
<td>۱۵۰-۲۰۰</td>
</tr>
<tr>
<td>Penninite</td>
<td></td>
<td>۱۰۰-۱۵۰</td>
<td>۱۰۰-۱۵۰</td>
</tr>
<tr>
<td>Ripidolite</td>
<td></td>
<td>۲۰۰-۲۵۰</td>
<td>۲۰۰-۲۵۰</td>
</tr>
<tr>
<td>Brunsvigite</td>
<td></td>
<td>۱۵۰-۲۰۰</td>
<td>۱۵۰-۲۰۰</td>
</tr>
<tr>
<td>Diabane</td>
<td></td>
<td>۱۰۰-۱۵۰</td>
<td>۱۰۰-۱۵۰</td>
</tr>
<tr>
<td>Thuringite</td>
<td></td>
<td>۳۰۰-۳۵۰</td>
<td>۳۰۰-۳۵۰</td>
</tr>
<tr>
<td>Chamosite</td>
<td></td>
<td>۳۰۰-۳۵۰</td>
<td>۳۰۰-۳۵۰</td>
</tr>
</tbody>
</table>
جدول ۳ نتایج آنالیز نفتاله‌ای از کلیتی کمیتی

<table>
<thead>
<tr>
<th>Label</th>
<th>D1-Ch1</th>
<th>D1-Ch2</th>
<th>D1-Ch3</th>
<th>D1-Ch4</th>
<th>D1-Ch5</th>
<th>D1-Ch6</th>
<th>D1-Ch7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>24.21</td>
<td>24.15</td>
<td>24.04</td>
<td>24.0</td>
<td>24.6</td>
<td>24.7</td>
<td>24.7</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>24.21</td>
<td>25.14</td>
<td>24.76</td>
<td>24.6</td>
<td>24.22</td>
<td>24.6</td>
<td>24.6</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>FeO</td>
<td>23.02</td>
<td>22.17</td>
<td>22.87</td>
<td>22.77</td>
<td>22.76</td>
<td>22.76</td>
<td>22.76</td>
</tr>
<tr>
<td>MnO</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>MgO</td>
<td>13.4</td>
<td>14.85</td>
<td>14.84</td>
<td>15.11</td>
<td>14.9</td>
<td>15.15</td>
<td>15.15</td>
</tr>
<tr>
<td>CaO</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Total</td>
<td>88.94</td>
<td>88.44</td>
<td>88.86</td>
<td>88.77</td>
<td>88.77</td>
<td>88.77</td>
<td>88.77</td>
</tr>
</tbody>
</table>

محاسبه براساس 24 آنالیز

<table>
<thead>
<tr>
<th>شی</th>
<th>مقدار (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>14.8</td>
</tr>
<tr>
<td>Ti</td>
<td>0.3</td>
</tr>
<tr>
<td>Al</td>
<td>14.7</td>
</tr>
<tr>
<td>Cr</td>
<td>0.3</td>
</tr>
<tr>
<td>Fe</td>
<td>1.9</td>
</tr>
<tr>
<td>Mn</td>
<td>0.2</td>
</tr>
<tr>
<td>Mg</td>
<td>14.9</td>
</tr>
<tr>
<td>Ca</td>
<td>0.1</td>
</tr>
<tr>
<td>Na</td>
<td>0.1</td>
</tr>
<tr>
<td>K</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

شیء است.

\( T(\text{°C}) = 212.3 + 17.54 \times \text{Al}^{IV} \)

با استفاده از عبارت ریاضی فوق و مقادیر آنالیز شده در جدول ۴ دمای شکل کلیتی سنگ‌های کویپزیک براساس تغییرات در محتوای \( \text{Si}^{IV} \) و تغییرات قابل اطمینان از دما را بین 

\( 297-209 \) درجه سانتی‌گراد تخمین می‌دهد. در اینجا کلیتی از دمای

\( 212.3 \) درجه سانتی‌گراد حداکثر با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سانتی‌گراد خواهد بود و در یک آزمایش دمای شکل کلیتی. میزان \( \text{Al}^{IV} \) با استعمال شکل‌های ۸ و ۹ از رابطه استحکام بین 

\( \text{Si}^{IV} \) و 

\( \text{Fe}^{V} \)

ورزشده می‌شود. در جایگاه کلیتی \( \text{Si}^{IV} \) با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سانتی‌گراد حداکثر با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سانتی‌گراد خواهد بود و در یک آزمایش دمای شکل کلیتی. میزان \( \text{Al}^{IV} \) با استعمال شکل‌های ۸ و ۹ از رابطه استحکام بین 

\( \text{Si}^{IV} \) و 

\( \text{Fe}^{V} \)

ورزشده می‌شود. در جایگاه کلیتی \( \text{Si}^{IV} \) با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سانتی‌گراد حداکثر با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سانتی‌گراد خواهد بود و در یک آزمایش دمای شکل کلیتی. میزان \( \text{Al}^{IV} \) با استعمال شکل‌های ۸ و ۹ از رابطه استحکام بین 

\( \text{Si}^{IV} \) و 

\( \text{Fe}^{V} \)

ورزشده می‌شود. در جایگاه کلیتی \( \text{Si}^{IV} \) با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سانتی‌گراد حداکثر با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سانتی‌گراد خواهد بود و در یک آزمایش دمای شکل کلیتی. میزان \( \text{Al}^{IV} \) با استعمال شکل‌های ۸ و ۹ از رابطه استحکام بین 

\( \text{Si}^{IV} \) و 

\( \text{Fe}^{V} \)

ورزشده می‌شود. در جایگاه کلیتی \( \text{Si}^{IV} \) با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سانتی‌گراد حداکثر با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سنتی‌گراد خواهد بود و در یک آزمایش دمای شکل کلیتی. میزان \( \text{Al}^{IV} \) با استعمال شکل‌های ۸ و ۹ از رابطه استحکام بین 

\( \text{Si}^{IV} \) و 

\( \text{Fe}^{V} \)

ورزشده می‌شود. در جایگاه کلیتی \( \text{Si}^{IV} \) با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سانتی‌گراد حداکثر با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سانتی‌گراد خواهد بود و در یک آزمایش دمای شکل کلیتی. میزان \( \text{Al}^{IV} \) با استعمال شکل‌های ۸ و ۹ از رابطه استحکام بین 

\( \text{Si}^{IV} \) و 

\( \text{Fe}^{V} \)

ورزشده می‌شود. در جایگاه کلیتی \( \text{Si}^{IV} \) با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سانتی‌گراد حداکثر با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سانتی‌گراد خواهد بود و در یک آزمایش دمای شکل کلیتی. میزان \( \text{Al}^{IV} \) با استعمال شکل‌های ۸ و ۹ از رابطه استحکام بین 

\( \text{Si}^{IV} \) و 

\( \text{Fe}^{V} \)

ورزشده می‌شود. در جایگاه کلیتی \( \text{Si}^{IV} \) با فاصله‌ای معنی‌داری بین ۳۰۰ تا ۴۰۰ درجه سانتی‌گراد حداکتر
برای نمایش (آلومینیم) با
همارایی حاصله‌ای) (شکل 8) دو میدان با خطوط مند و
منتفع به نمایش گذاشته شده است. روی نمودار میدان نشان
داده شده با خطوط مند توسط [16] و کوستره مشخص شده
با خط تبره توسط [27] اثره شده که نشانگر محل قرارگیری
کلریت‌های پایدار در سنگ‌های درگون و در نهشت‌های
معدنی گرنب با دمای منتوت تا بالا که مقدار AlZ
بالایی دارند، هستند. نمونه‌های مورد بررسی دارای مقدار بالایی از
بوده و در کوستره کلریت‌های درگونی قرار می‌گیرند
[20]. از طرف دیگر وجود کوستره کلریت و پرهنیت و
امفیبول (آکتینوت) در سنگ‌های با ساختار آدرن
نشان‌دهنده این است که سنگ تحت تاثیر درگونی با
درجهٔ ضعیف قرار گرفته است. مجموعه پرهنیت + امفیبول

جدول 4 حراج سنگی کلریت در سنگ‌های کاپوری سرکوبه برساس روش [9].

<table>
<thead>
<tr>
<th>سیال</th>
<th>تغییرات ترمودینامیکی</th>
<th>تغییرات ترمودینامیکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(C)</td>
<td>AlIV + (Fe/Fe+Mg)</td>
<td>(Fe/Mg+Mn)</td>
</tr>
<tr>
<td>212.31</td>
<td>17.54</td>
<td></td>
</tr>
</tbody>
</table>
Bravard and Bragonier, 2001; Toth, 2002; Catigati et al., 2002; Xu et al., 2003; Matsumoto et al., 2004; Cardona et al., 2005; Park et al., 2006; and others). Chlorite and chloritoid are common, stable minerals in low-grade metamorphic rocks, and their occurrence is often associated with the development of shear zones and thrust faults. Chlorite is a hydrous, dioctahedral silicate mineral, consisting of a layered structure with alternating silica and magnesium/hyalomelane layers. Chloritoid is a high-pressure polymorph of chlorite, with a distorted layer structure.

Chlorite has been used as a geothermometer in various tectonic environments, including subduction zones, collision zones, and orogenic belts (e.g., Axen et al., 1991; Backman et al., 1992; Cardona et al., 2005). Chlorite geothermometry is based on the thermodynamic properties of the chlorite structure, which are correlated with the temperature and pressure conditions of the geological environment. However, the interpretation of chlorite geothermometry is complicated by the fact that chlorite can be a major constituent in a variety of geological settings, and its thermodynamic properties can be influenced by the presence of other minerals in the assemblage.

Recent studies have focused on improving the accuracy of chlorite geothermometry by incorporating additional information from other minerals and geothermobarometric constraints. For example, the combination of chlorite geothermometry with garnet thermometry has been used to constrain the P-T evolution of tectonic belts (e.g., Cardona et al., 2005; Matsumoto et al., 2006). Similarly, the use of chlorite geothermometry in conjunction with other geothermobarometric approaches, such as those based on calcite or plagioclase compositions, has been shown to provide a more complete understanding of the P-T conditions of geological processes.

Despite these advances, the interpretation of chlorite geothermometry remains a challenging task, and further research is needed to refine the thermodynamic properties of chlorite and to improve the accuracy of geothermometric estimates. Future work should also consider the potential for chlorite to react with aqueous fluid systems, which may affect its thermodynamic properties and the accuracy of geothermometric estimates.

References: