همخوانی دماسنی مałک دـگر‌شکل کلـسیت در سنگ‌های اهـکی و زمین-دماسنی
کلریت‌های توده‌گی‌ب‌ری سـرکوبه

ژین سخایی، علی‌رضا داوودیان، ناهید شبانیان

دانشکده ماتیعی و علمی زمین، دانشگاه شهید رجایی

چکیده: منطقه‌ی سرکوبه در شهرستان خمین و در بی‌ثبات‌ترین منطقه‌ی زمین‌ساختی (سنندج - سیرجان) قرار گرفته است. این منطقه‌ی شامل انواع مختلفی از سنگ‌های رسوبی و آذرین از جمله سنگ‌های اهکی تجدید تبلور یافته، سنگ‌های سیلیسی و گلبیت (گلبیت‌های (لاپیدی) است. کانی‌های اصلی کانی‌های پالئوکاردی، کانی‌های آبیات، کانی‌های بیونتی و گیاهانی و زیرک به عنوان کانی فرعی، به علاوه کلریت، به‌ناریه و آمفیبول نمونه‌هایی از کانی‌های حاصل از تجزیه هستند، با توجه به بناه‌بندی کانی‌های تشکیل‌دهنده منطقه، این سنگ‌ها در گروه‌بندی رسمی تا رخ‌هایه ششسپ تا رخ‌هایه ششسپ باید در برابر سه سنگ‌های تحقیق در نظر گرفته شود. این سنگ‌ها در سنگ‌نگاری انجام شده و بر روی کانی کلریت از سنگ‌های اهکی تجدید تبلور یافته، ماکل درگر‌شکلی از نوع IV و است. ماکل‌های درگر‌شکل دیگر نمونه‌های تبلور بی‌رنگی کلریت را که در دمای بالاتر از 250 درجه سانتی‌گراد حاوی خشک آب و حتی بیشتر از 350 درجه سانتی‌گراد همچنین براساس دماسنی‌های گرفته روی کانی کلریت، دمای تبلور این کانی از 297 تا 329 درجه سانتی‌گراد تشخیص داده شده است. که با نتایج بدست آمده، بدست دمای درگر‌شکلی در ماکل‌های کلیسیت همکاری می‌دارد.

واژه‌های کلیدی: ماکل درگر‌شکلی، زمین-دماسنی، کلریت سرکوبه، خمین-سنندج، سیرجان

مقدمه

یکی از هدف‌های علم‌سنجش‌های تعبیر دماسنی که یکی از این سنگ‌های آذرین و دگرگون تشکیل می‌شوند و یا تغییر شکل می‌دهند. روی‌های متغیری برای تعیین دما وجود دارند. یکی از این روی‌های متغیری از این کانی‌ها می‌باشد که در برابر کلریت، سیلیسی و آمفیبول تغییر شکل در زمین‌ساخت دیگرین از منطقه‌ی دگر‌شکلی است. [1] در فاصله ماکل‌شکلی شهربازار مهیز از تغییر شکل، نقش‌بازی که در بلورهای کلریت‌های کم‌تراشیده شده در دمای زیر 250 درجه سانتی‌گراد و به نظر زیادی تغییر می‌کند. [2] و نیز نطق‌های تطبیقی تغییر نسخه‌های بارز می‌باشد که در بلورهای کلریت‌های کم‌تراشیده شده در دمای زیر 250 درجه سانتی‌گراد و به نظر زیادی تغییر می‌کند. [2] و نیز نطق‌های تطبیقی تغییر نسخه‌های بارز می‌باشد که در بلورهای کلریت‌های کم‌تراشیده شده در دمای زیر 250 درجه سانتی‌گراد و به نظر زیادی تغییر می‌کند. [2]

کلریت در محیط‌های زمین‌ساخت متعادل، نظری محیط‌هایی تغییر دگرگونی و درجه پایین و سنگ‌های معمول (بدر) که به‌عنوان می‌باید و ماکل‌های دگر‌شکلی

zeynab.sakhaei@gmail.com

بهبودی نمودار، تلفن: ۹۲۱۶۶۴۸۷۲۳۲، نامبر: ۹۳۲۲۳۳۷۴۹۴۴۴، پست الکترونیک: ۳۸۷۴۲۴۶۵۴۳۹
درک رساندن الگوهای یافته می‌شود. این همراه با ریکاردی انتخابی کاتیون‌های که به فرمول وجود می‌روند و با به‌طور مستقیم از محلول الگوهای یافته می‌شود [14-16]. کلریت یکی از خاصیت سیاسی روان‌های است و بی‌میزانی، پارامترهای شاری مانند گرنژندگی اکسیدن، فعالیت بیونی و pH غلیظ سلول‌ها یا غلیظ‌های سلول‌ها که در ترکیب شیمیایی کلریت نش می‌شود. [17]. ساختار آیدال این امروزین ساختار دارد بی‌میزان ساختار و ساختار هیدروکسید شناخته می‌شود و بی‌میزانی چهارچوپی مفت لی‌می‌توان نشانه که (Mg(3SiO4)(OH)3، می‌شود) معرفی شده است.

فرمول کربناتینی‌های کلریت به مراجعه:

\[(R_u^{2+} R_y^{3+} \square)_v^z^w (Si_{4-x}Al_x)^{4+} O_{10-W} (OH)_{8-W} U + Y + Z = 6 \]

Z = (Y-W)/X/2

\[Fe^{4+} Al^{3+} Mn^{2+} Fe^{3+} Fe^{2+} Al^{3+} Ti^{4+} V^2+ \]

منظره جای خاک ساختگی است.

موقت‌های هشتوچوجی (پالادیوس) متفاوت از هشتوچوجی چهارچوپی (بالاسیال) به فرمول کلی هستند. اشغال موقت‌های هشتوچوجی نشان دهنده مجموع کانی‌پوش در

\[U = Y + Z = 1 \]

Cr, Ti, Ni, Mn, V,

\[Fe^{4+} Al^{3+} Ti^{4+} \]

معادل‌بایندهای دهنده‌های مین، که عموماً در مقادیر اندک و در موقت‌های هشتوچوجی Cu, Li

کلریت قاره‌ی گیرنده را نشان می‌دهد این عناصر هماهنگ به

\[Si, Al, Fe^{3+}, Fe^{2+} \]

به تابع ترکیب گستردگی کلریت کمک می‌کند.

زنجیره‌های انتقال نیز در زمان بلیو-کوآن‌تری رخ داده است [29].

\[\text{ساختار گازوری هادون یافته واقع در شرایط خاص از قبیل تری و حاصله‌ای به‌جود که توسط [33] انجام شده است. داشتن مناسب مولکول‌ها با مقدار [34] به عنوان گازوری (قابلیت گازوری) مشخص شده‌اند. } \]

\[\text{شکل 1. } \]

\[\text{محلات (24) به عنوان گازوری (قابلیت گازوری) مشخص شده‌اند. } \]

\[\text{شکل 1. } \]
جدول 1: تشکیل دهنده‌های کلریت و واکنش‌های نیابادی [22، 131]

| اکسیدیون کامپوننت | مولکولیون کامپوننت | واکنش اکسیژن | اکسیدیون اکسیژن
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SiO₂</td>
<td>Mg₆Si₄O₁₀(OH)₈</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 MgO</td>
<td>Mg₆Al₃Si₃O₁₀(OH)₈</td>
<td>(Si⁴⁺)→(Al³⁺) ↚ (Al³⁺) → (Si⁴⁺)</td>
<td>Mg₆Al₃Si₃O₁₀(OH)₈</td>
</tr>
<tr>
<td>3 FeO</td>
<td>Fe₂Si₃Al₃O₁₀(OH)₈</td>
<td>(Mg²⁺) → (Fe²⁺)</td>
<td>Fe₆Al₃Si₃O₁₀(OH)₈</td>
</tr>
<tr>
<td>4 Fe₂O₃</td>
<td>Fe₂Si₃Al₃O₁₀(OH)₈</td>
<td>(Al³⁺) → (Fe²⁺)</td>
<td>Fe₂Si₃Al₃O₁₀(OH)₈</td>
</tr>
<tr>
<td>5 Al₂O₃</td>
<td>Al₂Si₃O₁₀(OH)₈</td>
<td>3(Mg,Fe³⁺) → 2(Al³⁺)</td>
<td>Al₂(Mg,Fe³⁺)₃</td>
</tr>
<tr>
<td>6 H₂O</td>
<td>Fe₂⁺Fe³⁺Al₃Si₃O₁₀(OH)₈</td>
<td>(Fe²⁺) → (Fe³⁺)</td>
<td>Fe₂⁺Fe³⁺O₂⁻OH</td>
</tr>
</tbody>
</table>

صرف: گزارش زمینشناسی‌های شده از منطقه سرکوبه بر پایه نقشه‌های زمینشناسی ۱:۱۰۰۰۰۰۰۰ در تابستان ۱۳۹۵. [۲۲]

Legend
- Recent river deposits
- Young alluvial terrace
- Gravel fan
- Old alluvial terrace
- Alkali gubhras
- Shale & sandstone
- Sandy limestone
- Fault
- Town & village
- Motorable track
- Study area

Map
- Title: "Exchange Vectors, Exchange Reaction, Molecular Component Oxide Component"
- Details: "Exchange Vectors, Exchange Reaction, Molecular Component Oxide Component"
های آهکی در دانه‌های تیهو مشاهده کرد (شکل ۲). روش بررسی

با بررسی‌های صحرایی و جمع‌آوری نمونه‌های لازم، از آن‌ها

مقاطع نازک - صافی - ته‌های شند، و بررسی‌های سنگ‌نگار

OLYMPUS - BX20

با استفاده از میکروسکوب مدل ۵۰ میلی‌مترات

صورت گرفت. سپس مقاطع تیهو شده پس از پویش با کربن

با یک ریزبی‌داس‌بندی الکترونی Cameca

مدل SX50 نقطه‌ای شبند تعدادی از کانی‌ها برای تغییر

ی فرمول ساختاری، در گروه زمین‌شناسی دانشگاه

اوکاله‌مسینی امروز در شرایط ۲۰ کیلو ولت، جریان

۲۰ نانو آمپر و ۱۰ نانو زمان شمارش با انتخاب نقاط ۲ میکرومتری

انجام گرفتند. دقت تجزیه نقطه‌ای برای یک صدم درصد

برای اکسیدهای عناصر اصلی بوده است. آنالیز کانی‌ها با

نمایه‌گیری آمپیاتوکری PET [۱] و نیز صفحات کستره به نرم

افزار Excel مورد بررسی قرار گرفتند و فرمول ساختاری کانی-

ها محاسبه شد و محاسبه‌های مقایسه Fe³⁺ بر مبنای ملاحظات

عنصرسنجی با [۱۲۳] انجام شد.

در این نقشه‌ها توده‌ی نفوذی بوسیله رسواده‌ای آب‌رفتی

پوشیده شده است. در حالی‌که در مشاهدات صحرایی روى

دانه‌های تیهو و به طور اندک گاهی خط‌های نهایی ناشی

از سنگ‌های آهک و گاهی کوارتزیت دیده می‌شوند. گاهی

به نظر می‌رسد که با فتوشیپ مالک‌ریا یا سبب تغییرات در

ورونق شدن) سنگ‌های توده‌ی نفوذی می‌شود و ظاهر سنگ‌ها از ملاک‌ریا به دست می‌آیند.

تغییر می‌کند (شکل ۲، الف). با توجه به این که سنگ‌های

آهکی و کوارتزیت تحت تأثیر ماکم‌های توده‌ی نفوذی

قرار گرفته‌اند، بنابراین سنگ‌های کوارتزیت جوانتر بوده و با توجه

به نقشه‌های زمین‌شناسی دانشگاه در حال رونق می‌باشند. به این

که آزمایشات انجام شده است. ناحیه‌ی سرکوب به

پیشتر حالت تیهو‌های داشته و معمولاً این توده‌های نفوذی

گالری‌یابی بخش‌های مرتفع را تشکیل می‌دهند. با توجه به این-

که آب و هواي منطقه‌ی نیمه‌خشک است اثر تغییرات

ناشی از اعمال علاوه بر فرسایش پوسته پاییز (شکل ۴) و

وارژه‌ی سنگ‌های کلوپریتا را می‌توان علاوه بر واردوب سنگ

شکل ۲: افلاط نمایش تغییر رنگ در سنگ‌های بی‌فرسایش پوسته پاییز، بی‌نمایش وارزه‌های سنگ‌های کلوپریتا و آهکی.
بررسی‌های سنگ نگاری سنگ‌های کاربولی
سنگ‌های توده‌ای سروکره اصولاً باید دانه‌ای تا نهایت فاصله‌ای بافت افتیابکی تا سایر افتیابکی‌ها نشان می‌دهند. کانون‌شناسی این سنگ‌ها نسبتاً ساده بوده و شامل پلاژیولاز: از تکش خطی‌دهی‌های اصلی سنگ است که دارای حجم ۵۰ درصد مقاطع را تشکیل داده که انداره دانه‌ها غالبیتی متوسط بوده و نیمه‌شکل دارا بیشتری در کلینوبیکس می‌باشد. کهن‌ترین سنگ‌های پلاژیولازهای بافت بیشتر بوده و بسیار شدید است.

سنگ‌های نگاری سنگ‌های آمیک
باید این سنگ‌ها گروه‌سازی هم‌بعد و چندوجه است Interlobat

![Image 1]

![Image 2]
کلپستی: بلورهای کلپست بخش اعظم سنگ را تشکیل می‌دهند و به صورت نیمه‌شکل‌دار تا پی‌شکل دیده می‌شوند و دارای رخ کامپی‌سنتزر (شکل ۳) در این سنگ‌ها بلور shape preferred) SPO کلپستی درای سمت‌گیری ترجیحی است که امری طبیعی بوده و دلایل وجود تنش و تغییر شکل بلاستیک است.

بحث

ماکل‌های دگرگشایی در بلورهای کلپست به صورت گسترده‌ای برای تشخیص تاریخ دگرگشایی استفاده می‌شوند [۹۴]. ریخت‌شناسی ماکل بلور کلپست در سنگ‌های آهکی منطقه سرکوبه، شیب‌سنگ و منطقه‌های III، خروط‌های آهکی انتحا بپد کردن و ساختن علامت‌های جوهر، جهر و قایق (نوارها ضخامت یکسان ندارند) بریده و بریده، حالات تحلیل تغییرات در ورودی دوم اکثریت سنگ‌های کلاسیکی ۳۰۰ درجه سانتی‌گراد کاری‌های اصلی گروفته توسط [۲، ۴، ۲۸، ۳۹] مشاهده شده است.

* نمودار هندسی ماکل‌های دگرگشایی در کلپست و گسترش آن در دمای متغیر [۴۰].

شکل ۴

* نمودار هندسی ماکل‌های دگرگشایی در کلپست و گسترش آن در دمای متغیر [۴۰].

شکل ۵

* نمودار هندسی ماکل‌های دگرگشایی در کلپست و گسترش آن در دمای متغیر [۴۰].
کلریت در سنگ‌های آذرین اساساً از دو گروه پیروکس، آمفیبول و بوئیت تشکیل شده است که کلریت‌های آذرین اولیه و پس از اینکه از آهن (هیمالند ترومپنیت، دفلتیت، دافنیت) معمولاً جانشین کلریت‌های فرومینیزین غنی از آهن می‌شوند می‌توانند شکل‌دهنده‌ای از سنگ‌های آذرین وجود کلریت حاصل از دو گروه سیلیکات‌های مینیزین است (۲۴۱). کلریت می‌تواند بصورت یک گروه تا سیستمی متفاوت است.

نتایج آنالیز نقطه‌ای کلریت‌های متعدد همراه با محاسبه فرمول ساختاری آنها در جدول (۳) امده است. فرمول ساختاری کلریت‌های پورپانکس و امپیلوپ، بوئیت و از انسودراچر و از آهن می‌شوند. در سنگ‌های صخره‌ای از سنگ‌های آذرین وجود کلریت حاصل از دو گروه سیلیکات‌های مینیزین است (۲۴۱). کلریت می‌تواند بصورت یک گروه تا سیستمی متفاوت است.

جدول ۲ تغییرات کلریت‌ها [۶۰]

<table>
<thead>
<tr>
<th>Chlorite Group Mineral</th>
<th>Fe₃(Fe⁺+Mg+Mn)</th>
<th>Si(apfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheridanite</td>
<td>۲۴۰-۲۷۶</td>
<td>۰-۲۰۰۰</td>
</tr>
<tr>
<td>Clinochlore</td>
<td>۲۷۵-۵۰۱</td>
<td>۰-۲۰۰۰</td>
</tr>
<tr>
<td>Penninite</td>
<td>۳۱۰-۴۰۰</td>
<td>۰-۲۰۰۰</td>
</tr>
<tr>
<td>Ripidolite</td>
<td>۲۴۰-۲۷۶</td>
<td>۰-۲۰۰۰</td>
</tr>
<tr>
<td>Brunsvigite</td>
<td>۲۷۵-۵۰۱</td>
<td>۰-۲۰۰۰</td>
</tr>
<tr>
<td>Diabanite</td>
<td>۳۱۰-۴۰۰</td>
<td>۰-۲۰۰۰</td>
</tr>
<tr>
<td>Thuringite</td>
<td>۲۴۰-۲۷۶</td>
<td>۰-۲۰۰۰</td>
</tr>
<tr>
<td>Chamosite</td>
<td>۳۱۰-۴۰۰</td>
<td>۰-۲۰۰۰</td>
</tr>
</tbody>
</table>
جدول ۳ نتایج آنالیز نفط‌های از کاکی کلریت.

<table>
<thead>
<tr>
<th>Label</th>
<th>D1-Chl1</th>
<th>D1-Chl2</th>
<th>D1-Chl3</th>
<th>D1-Chl4</th>
<th>D1-Chl5</th>
<th>D1-Chl6</th>
<th>D1-Chl7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>0.024</td>
<td>0.053</td>
<td>0.024</td>
<td>0.049</td>
<td>0.055</td>
<td>0.047</td>
<td>0.059</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.011</td>
<td>0.009</td>
<td>0.011</td>
<td>0.009</td>
<td>0.007</td>
<td>0.008</td>
<td>0.009</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.16</td>
<td>0.154</td>
<td>0.16</td>
<td>0.158</td>
<td>0.154</td>
<td>0.158</td>
<td>0.165</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>FeO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>0.021</td>
<td>0.021</td>
<td>0.021</td>
<td>0.021</td>
<td>0.021</td>
<td>0.021</td>
<td>0.021</td>
</tr>
<tr>
<td>CaO</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.888</td>
<td>0.888</td>
<td>0.888</td>
<td>0.888</td>
<td>0.888</td>
<td>0.888</td>
<td>0.888</td>
</tr>
</tbody>
</table>

محاسبه براساس ۱۲۰ آنی‌کریزین

<table>
<thead>
<tr>
<th>ماده</th>
<th>دمای ۱۲۰۰ °C</th>
<th>۳۶۰ °C</th>
<th>۱۰۰ °C</th>
<th>۱۰ °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>Ti</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Al</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Cr</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Fe</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mn</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mg</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Ca</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Na</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>K</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>sum</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>AlIV</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>AlV</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mg#</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

شده است.

$T(°C) = 212.31Al^{IV} + 17.54$

با استفاده از عبارت ریاضی فوق و مقادیر ارائه شده در جدول ۴، می‌توان تغییرات کلریت در سنگ‌های گیپری و سرب‌کریز براساس درجه حرارت، تغییرات قابل انتظاری از دما را بین $297-299°C$ و به طور متوسط $310°C$ را نشان می‌دهد (جدول ۴). که با انحراف استاندارد مقادیر دماهای اندام‌گیری شده، میانگین و خط برای $1/2.11$ ۱۰۰ درجه سانتی‌گراد خواهد بود. با ازایش دمای تشکیل کلریت، میزان $AlIV$ افزایش می‌یابد (شکل ۸ اف) و ارتباط مستقیمی بین $AlIV$ دما و میزان هسته‌وحشی وجود دارد. همچنین ارتباط مستقیم و رابطه مثبت بین محتوای آهن و منیزد کلریت با دما و نیز بین مقادیر این عناصر و محتوی زمین ساختی و ترکیب محلول وجود دارد.

در فرمول ساختاری کلریت بین کاتیون‌های Al^{III} با کاتیون‌های Si^{IV} می‌تواند طرف دیگر Mg و Fe جانشین‌های گستردگان رخ دهد. به گونه‌ای که کاتیون Si^{IV} می‌تواند در طرف دیگر تری موقتی یا موقت شتاب‌دهی وارد شود. در حالی که Fe جانشین Si^{IV} می‌شود. نسبت کاتیون‌های Al^{III} بین 1.32 و Mg^{2+} بین 1.55 می‌تواند با انحراف 1.87 نسبت کاتیونی Mg^{2+} بین 1.32 و Mg^{2+} بین 1.55 مقدار $Fe/Fe + Mg + Mn$ در مقابل سنگ‌های آدنری به سه طرف این سنگ‌ها هسته‌وحشی وجود دارد. از کلریت در سنگ‌های آدنری آدنری به سه طرف این سنگ‌ها هسته‌وحشی وجود دارد. از کلریت به سه طرف این سنگ‌ها هسته‌وحشی وجود دارد. از کلریت به سه طرف این سنگ‌ها هسته‌وحشی وجود دارد. از کلریت به سه طرف این سنگ‌ها H"
جدول ۴ حرفه سنگی کلریت در سنگ‌های کابوری سرکوبه بر اساس روش [۹].

<table>
<thead>
<tr>
<th>T(°C)</th>
<th>۱۸۵±۳</th>
<th>۲۲۰±۳</th>
<th>۲۵۰±۳</th>
<th>۲۷۰±۳</th>
<th>۳۰۰±۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlIV</td>
<td>۴۱.۳۳</td>
<td>۳۳.۰۲</td>
<td>۲۵.۷۱</td>
<td>۱۸.۴۰</td>
<td>۱۱.۱۹</td>
</tr>
</tbody>
</table>

جدول ۵ نمودار Fe/ (Fe+Mg+Mn) نسبت Si در پلاستیکی مناسب دربار Al۴

جدول ۶ نمودار Fe/ (Fe+Mg+Mn) نسبت Si در پلاستیکی مناسب دربار Al۴

براساس نمودار Fe/ (Fe+Mg) الومینیم با همان‌های کاریایی (۵۰‌و۲۰) و نمودار Fe/ (Fe+Mg) منطقه دنیا سنجش به شدت است. روی نمودار میدان نشان داده شده با خطوط ممتد توسط [۱۲] و گستردگی مشخص شده با خط تبره توسط [۱۳] از این شده‌اند که نشانگر محل قرارگیری کلریت‌های ایجاد در سنگ‌های دگرگون و در نشانه‌های معدنی گرما با دمای متوسط تا بالا که مقدار Al۴ با الایه‌ای دارند، هستند. نمودارهای مورد بررسی دراز مقدار بالایی از بوده و در گستردگی کلریت‌های دگرگون قرار می‌گیرند Al۴ [۱۳، ۱۴]. از طرف دیگر وجود کانی‌های کلریت و پهنه‌های آمفیبول (آکینتوئ) در سنگ‌های کابوری سرکوبه نشان‌دهنده این است که سنگ تحت تأثیر دگرگونی با درجه‌های مختلف قرار گرفته است. مجموعه پهنه‌های گیر و پیش‌گری

شکل ۷ نمودار Fe/ (Fe+Mg+Mn) نسبت Si در پلاستیکی مناسب دربار Al۴

شکل ۸ نمودار Fe/ (Fe+Mg+Mn) نسبت Si در پلاستیکی مناسب دربار Al۴
[19] Lee S. S., Guggenheim S., Dyar M. D., Guidotti C. V., "Chemical composition, statistical analysis of the unit cell, and electrostatic modeling of the structure of Al-saturated chlorite from...

[51] Inoue A., Kurokawa K., Hatta T., "Application of chlorite geothermometry to hydrothermal alteration in Toyoha geothermal system, southwestern Hokkaido, Japan”, Research Geology 60 (2010) 52–70.
